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  9.0 INDICES OF ABUNDANCE

9.1 Introduction

In theory, ecologists and wildlife managers depend on a range o f
sophisticated methods for assessing population abundance. In practice, it i s
often necessary to rely on some sort of index to abundance, supp lemen ted
perhaps by occasional use of the technically more satisfactory methods on a
few sample areas. Almost always the limitation is simply one of costs. If o n e
must deal with large areas it simply is too expensive to use the better methods
on a regular basis. Dice (1941:402) expressed the general idea very well:

"The difficulty of obtaining accurate counts of the number of ind iv idua l
mammals present on a given area has led to attempts to develop indices of
abundance for the species concerned. Such indices may or may not b e
convertible into terms of population density. For many practical uses ,
however, it is sufficient to know the relative abundance of a pa r t i cu la r
species in different areas or at different times without having an exact
count of the population".

Most of the experience in the 60 years since Dice's statement was pub l i shed
tends to show that exact counts are often not feasible. Estimates of some k i n d
are about all that can be managed, and these are usually difficult to achieve.

One of the risks in using an index is that it may not accurately r e f l e c t
actual population trends. White-tailed deer (Odocoileus v i r g i n i a n u s ) pe l le t
group counts provide one of the best examples of a useful index of a b u n d a n c e ,
yet Ryel (1971) found that drive counts on a fenced Michigan area yielded a n
inverse correlation between counts and index values over 11 years of data. He
pointed out various reasons for failure of the pellet group count method used
in this instance, and gave a good discussion of ways and means f o r
maintaining quality and integrity of the method.

Three approaches to using indices can be considered : (1) Di rect
conversion to a census method. The pellet group counts provide one of t h e
better known examples, inasmuch as the counts, under proper c i r cumstances ,
can be converted directly to an estimate of average numbers of deer p r e s e n t
on an area. (2) Calibration through ratio and regression methods, i n c l u d i n g
double sampling. A simple linear relationship between an index and an ac tua l
estimate of abundance is used to convert the index to an actual estimate o f
abundance. (3) Calculation of an improved index or a prediction equation. At
times, supplemental information may be used to strengthen an index wi t hou t
converting it to a direct estimate. These aspects are summarized in Fig.9.1.

Several sources of variability need to be considered in appraising a n
index method. One is stochastic in nature, arising from the variability of t h e
chance fluctuations in the births and deaths that result in change i n
population size. These changes occur even in the presence of constant b i r t h
and death rates, diminishing in importance as the population increases in size.
Theoretically, such effects can be neglected if fairly l arge populations a r e
under study. However, we usually can only study part of large popula t ions,
either through sampling the large population or by counts on relatively sma l l
sample areas. Stochastic effects may then become important. A second s o u r c e
of variability arises when birth and death rates are influenced b y
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environmental fluctuations, such as an unusual cold spell or o t h e r
environmental change during the reproductive season. Sometimes s u c h
changes are large enough to be labelled "catastrophic" and the results t h e n
are usually dramatic enough to attract attention to specific causes. Less
dramatic changes may be difficult to detect. A third souce of variability is t h a t
engendered by the sampling or observational process through which data o n
the population are obtained. Trying to sort out these several  sources o f
fluctuations in numbers may be very difficult and deserves more a t t en t i on
than it usually gets.
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Fig. 9.1 Aspects of the analysis of potential index data.

Indices have received very little attention. The large and ex tens ive
reference on estimating animal abundance by Seber (1982) contains only a
few pages on indices. This is not Seber's fault, but results simply because t h e r e
is very little literature on the subject, whereas the stochastic models imp l ic i t
in tag-recovery and survival data have received much attention in b o t h
theory and practice. The presentation here will thus start out by examining a
number of sets of data on population trends, and then consider some spec i f i c
t echn iques .
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Example 9.1 The pellet-group count

One of the better-known wildlife management indices is based
on the enumeration of accumulated fecal pellets of ungulates
(sometimes politely known as "sign", although the term may also
include other kinds of evidence of an animal's presence). Under
favorable conditions the method may provide direct estimates of
abundance. Such conditions usually depend on a substantial leaf-
layer deposited in the fall of the year (or other methods of
separating "old" and "new" pellet-groups) plus the over-winter
accumulation of groups. Even though many ungulates appear to
produce nearly 13 pellet-groups per day (with surprisingly small
variance), it is nonetheless true that even an assumption of
random distribution of groups still results in the need for rather
large numbers of plots being searched to give useful precision in
estimation. Thus long accumulation periods are essential. Some
workers have resorted to removing pellets from plots (or marking
those initially present) in order to be assured of an accurate
starting date. Unfortunately, this doubles the fieldwork required.

Although there is a variety of possible sources of error (a
major one is simply failure to find all of the groups on a plot),
some experience with pellet-group counts on areas where population
density could be determined quite accurately by other methods has
shown reasonable accuracy in estimating the actual number of deer
present. For immediate purposes here, though, we will consider the
method as an index. The model is simply:

                                                    E(xi) =   βDi

or that the expected number of pellet-groups per unit area (xi) is
directly proportional to the density (Di) of animals present on

the ith area. The proportionality constant (β) depends on the
defecation rate (essentially 13 groups per day), length of
accumulation period, and units of measurement of the plots. One
further complication is that, if the accumulation period is long
(and includes winter conditions and perhaps a hunting season),
then there may be an appreciable mortality over the period
represented by the counts, so that the estimate obtained is really
for an average density.

If independent direct estimates of deer density are
available, calibration may be attempted by using ratio or
regression methods to convert pellet-group counts to density
estimates, i.e., we use a set of direct population estimates (yi)
and a set of pellet-group counts (xi) on the same areas and turn
the above equation around to as to have:

                                                Di = E(Yi) = (1/β) E(Xi)

so that an estimate of 1/β is obtained from the comparisons.
However, as remarked above, the pellet-group count can also be

converted directly. If the mean number of pellet-groups on 1/50th

acre plots on the ith area is xi, then a direct estimate is given
by (Eberhardt and Van Etten 1956):
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                                  Di = 50(640)xi/12.7(days since leaf-fall)

where Di denotes the estimated number of deer per square mile and
1/β  is calculated from the several quantities on the right-hand
side of the equation.  Hence, pellet-group counts can be used in
all 3 of the ways suggested in Fig. 9.1; directly, by calibration,
or by direct conversion. The latter two methods should give the
same value for 1/β, within sampling error.

Pellet-group counts represent an excellent example, perhaps
the best known, of an index method susceptible to exact treatment
by statistical methods. This is because there is an exactly
definable population (the total number of pellet-groups) available
on a discrete area. In most cases, there will be a considerable
advantage to be gained by using stratified sampling methods, and
the costs of travel versus those associated with actual counting
on plots are such as to dictate the use of a cluster of plots at
each location (the individual plots cannot be very large due to
the effects of plot size on counting errors).

Some experience has indicated that the negative binomial
distribution provides a good fit to the observed frequency of
pellet-groups per plot, and this finding may be useful in the
efficient design of new surveys.

Example 9.2 Conversion factors for pellet-group counts

Part of the Michigan experience with pellet-group counts as a
census method includes counts on two fenced areas in which deer
numbers are supposedly known with some accuracy. Data from one of
these areas (Cusino Enclosure) is as follows (Ryel 1971:124):

            Mean number     Known number
            of groups            of deer per
Year     per plot                       square mile                                   
.
1953    9.403                     28.8
1954    2.252                     25.0
1955    1.778                     28.1
1956    2.246                     29.3
1958    2.943                     15.5                     
           12.622                    120.7

Using a ratio estimator, we obtain: √b
y

x
i

i

1 = ∑
∑

=12.622/120.7 = 0.105.

Data for a direct estimate can be used to calculate:  b
^

 2=
[211(19.56)]/[50(640)] = 0.089. Here, 211 is the average number of
days since leaf-fall, and 19.56 is an average number of pellet-
groups per deer, adjusted for the sex and age composition of the
known number of deer on the area. The direct conversion factor is

the reciprocal of b
^
 2 or 11.2, which is somewhat higher than the

reciprocal of b
^
 1 which is 9.5. One might thus expect to

overestimate true deer density by using pellet-group counts,
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if b
^
 1 and b

^
 2 are indeed as different as suggested here. There

are various other problems in comparisons on this and another such
area (George Reserve) and these were described in detail by Ryel
(1971).

Example 9.3 Roadside counts

Roadside surveys have been widely used in assessing the
numbers of many species, and a useful model for such a survey is
that used for pellet-group counts. However, β is not so readily
defined in this case, being affected importantly by the behavior
of the species, cover (habitat) conditions, along with the weather
and various other factors such as time of day (many species are
most active in early morning and in the evening). Quite a lot of
effort has gone into attempts to standardize roadside surveys by
taking counts during specified times and weather conditions. Very
likely such standardization techniques are suitable for
controlling most factors other than habitat differences. So far,
little has been done to try to take into account the effect on
visibility generated by different intensities of vegetative cover.
One obvious prospect is to attempt to record distances from the
observer for each individual animal seen, in the manner of line
transects, but a suitable model is needed for use of such a
correction.

The net effect of the several uncertainties about roadside
and other visual counts (such as aerial surveys) is to make it
likely that such methods may be reasonably satisfactory for
comparisons from year to year on the same routes, but rather less
useful for comparisons of routes in different cover types.
Conversion will need to be accomplished by use of ratio or
regression methods and independent direct estimates of density on
a sample of areas, as there is presently no way to write an
equation like that used for pellet-group counts for roadside
surveys.

Well-known examples 0f calling counts are counts of crowing
pheasants, or of the drumming of ruffed grouse, cooing of doves,
etc. The usual technique is to make counts for a fixed period of
time (typically 2 to 5 minutes) at each of a number of stations or
"stops". Normally the counts are made along roads as a consequence
of the need to cover sizable areas. As with roadside counts, time
of day, weather, and seasonal effects are important. Often a
degree of standardization is achieved by making frequent counts on
a single route at different times of the season. If the population
on that route is assumed to remain constant, curves of calling
intensity against time of day (and time of season) may serve as a
reference standard for adjusting the other counts.

Auditory counts bring in the hearing acuity of the
individual observer as an important additional variable. A useful
model may then be:

                                                       E(xij ) =  βri2 Dj
where ri represents the radius within which a call may be heard by
an individual observer. Presumably such a radius may also depend
on cover and weather conditions (plus interference from other
sounds -- traffic noise being usually the main offender), so there
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may be a "regional effect" as well as an "observer effect" on the
recorded counts.

The following table gives results of hunting success and calling
counts for Gamble quail in Arizona.

Hunting success and calling counts for Gambel quail in  Arizona (Smith
and Gallizioli 1965).

         Oracle Junction Pinnacle                            Peak   Cave Creek                                       

            Quail           Call
Year   per trip             count                       
                y                x         y       x         y       x

1958    3.81             61      3.53    83      --      --
1959    2.70             24      1.37    10      --      --
1960    6.40            103     3.74    94     2.96    72
1961    2.57             25      1.20    22      0.64    8
1962    6.09             75     2.83    59      2.55    64
1963    4.84             62      1.70    25      1.82    36
1964    2.91             41      1.60    15      1.38    26
_____   _____       _____  ____ ____ ____  _____
Totals  29.32           391   15.97   308    9.35    206

  b1
^    =ΣY/ΣX   =       .075                  .052             .045   

 b2
^   = ΣYX/ ΣX2 =     .070                  .044              .043

Regression
 slopes                     .054                   .030              .034
Reg.
intercepts              1.200                  .94               .45

 Example 9.4 A pocket-gopher example.

Reid et al.(1966) gave an interesting example in which an index
(mounds and earth plugs) of pocket-gopher (  Thomomys    talpoides  )
abundance  is compared with actual abundance, as established by
trapping-out  gophers on sizable plots. They concluded that the
relationship between  number of gophers present and the index was
curvilinear, but did so  by plotting the number of gophers per
unit area against the number  of signs. Such a plot does indeed
suggest a nonlinear relationship.  However, there were 2 areas
(Black and Grand Mesas) studied in 3  years (1962 to 1964).   

 If we assume the trap-outs to measure absolute abundance, without
sampling error, and adopt the model of simple proportionality,
E(xI)=βD i, then the appropriate  plot is of signs (Y) against
gophers per acre (X). Also, if the areas  and years are plotted
separately (or distinguished by individual  symbols), then it
seems that the apparent curvilinearity may really  be due to
differences in β between years and/or areas. It is further
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evident that variability increases with increasing density of
gophers.  Hence, we adopt the model:  xij = bij Dij eij, where xij

denotes number of signs in the ith year and jth area, Dij is
actual density of gophers, bij  is the proportionality constant
between gophers and sign, and eij is a proportional "chance"
error. Since Dij is assumed to be measured without error (or with
negligible error), we can arrange the equation in terms of signs
per gopher, i.e., consider:

                                         yij =
xij

D i j
  = bij  e i j

and take logarithms:
                      log yij = log xij - log Dij = log bij + log eij
Then the data  can be subjected to a simple one-way analysis of
variance. The results indicate that there are significant
differences and, using a multiple-comparison test (Scheffe 1959)
shows that Grand Mesa in 1963 is significantly different from its
1964 value and from Black Mesa in 1962. We are thus fairly
confident that the main factor in the apparent curvilinear
relationship is really a difference between areas and years, but
could not, of course, exclude a behavioral difference as a
possibility at low densities. The conclusion here, as with the
quail example above, is that it will very likely be necessary to
include both spatial and temporal data in any initial efforts to
calibrate an index.

Abundance of pocket-gopher sign (mounds and earth plugs  on one-
acre plots) expressed as logarithm (base e) of signs per  gopher
(Reid et al. 1966).   

         Black Mesa                   Grand Mesa                                

  1962    1963              1964                     1963               1964                           
     

     1.91    2.76     2.01           2.03    1.82         
      2.32    2.23    2.02           1.99    2.06        
      2.05    2.16    2.18           2.17    1.41        
      2.02    1.92    2.54           2.24    1.69         
      1.86    2.36    1.55           2.07    1.54         
      1.31    2.48    1.40           2.88    1.76         
      1.58    2.65    1.61           2.18    2.27         
      1.80    1.88    1.83           2.63    2.12         
      2.05    1.93    1.43           2.42    2.09         
      2.04    2.14    2.24           2.54    2.04        
      1.70               2.20       
      1.74         
      2.07         
      _____  _______ _______ _______ ______

x-   =  1.882   2.253   1.910       2.316   1.880
ni  = 13      10         11            10      10

s2 = 0.0670  .0947   .1395   .0865   .0780
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9.2 Trends in abundance

For at least the larger vertebrates, there are few occasions when data o n
the full course of the growth of a population are available. Usually only a
relatively short segment of the record of population size is at hand. A
conceptual model of the overall possible course of events is nonetheless use fu l
for interpreting these shorter segments of data. Ecology textbooks desc r ibe
long-term population growth by the logistic model. Further details of t h i s
model appear in the chapter on population models, but the general shape i s
illustrated by the trend of an elephant seal population (Fig. 9.2). The logist ic
curve is characterized by rapid initial population growth that slows down o v e r
time, with the curve ultimately approaching an asymptotic level ( o f t e n
denoted as K). The approach to an asymptotic value may be erratic with l a r g e
year-to-year fluctuations. Slowing-down of the growth rate usually i s
associated with resource limitations of one sort or another, often food or space.
Such restrictions make populations highly susceptible to year-to-year w e a t h e r
f luc tuat ions.

The logistic curve assumes a constant decline through time of the r a t e
of increase. Although data are limited, evidence for large mammals (Ebe rha rd t
1977b, Fowler 1981) suggest that a different model may be appropriate, w i t h
the rate of population growth virtually constant over much of the range, a n d
then slowing down sharply as the asymptotic value (K) is approached. A
simple exponential growth curve may then be adequate to to describe t h e
initial stages of growth. The essential feature for present purposes, h o we v e r ,
is the overall sigmoid shape of the curve -- concave-upwards in the e a r l y
stages, and concave-downwards as growth slows down.
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Fig. 9.2. Growth of an elephant seal population (Stewart et al. 1994) with a logistic curve
fitted by non-linear least-squares. Data are number of births tallied on colonies on Ano
Nuevo Island and the adjacent mainland.
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If one accepts generality of the sigmoid curve illustrated in Fig. 9.2,
then the analysis of a shorter series of observations will obviously b e
influenced by the position of the data segment on the overall curve. A bas i c
criterion is simply whether a curve drawn through the data segment i s
concave-upwards (initial growth stages) or concave-downwards ( a p p r o a c h i n g
the asymptotic level). If the early growth segment essentially follows a n
exponential curve, then plotting logarithms of the counts against time shou ld
yield a straight line. Two examples of such data appear in Fig. 9.3.

Fig. 9.3. Growth curves for bison (upper panels) with an exponential curve fitted t o
numbers counted on the left, and a straight line fitted to logarithms of number counted on
the right. Data from Fredin (1984). Lower panels show an exponential curve fitted t o
numbers of Muskox on Nunivak Island, Alaska and the corresponding loglinear regress ion
line. Data from Spencer and Lensink (1970).

Many sets of population trend data are much more variable than t h o s e
shown above, and we thus need to consider statistical tests. A simple test f o r
curvilinearity is demonstrated in Section 9.3. Various monte carlo s imula t ions
were conducted by Eberhardt (1992) to appraise the utility of the approach i n
attempting to determine whether a segment of population trend data could b e
demonstrated to be above or below the inflection point on a curve like that of
Fig. 9.2 (the inflection point divides a growth curve into 2 segments; the s lope
of the curve increases up to the inflection point and decreases beyond it). A
two-stage test was developed. The observed, untransformed, numbers of t h e
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trend index are checked for curvilinearity in the first stage. If this test is n o n -
significant, then the data are log-transformed and the test again applied. T h e
first stage examines data of the form of the left side of Fig. 9.3. The basis for t h e
second-stage test is the fact that the exponential curve becomes a straight l i n e
under log-transformation (right side graphs of Fig. 9.3), so should not show a
significant departure from linearity in the test. However, the right-hand l i m b
of Fig. 9.2 remains curved under the log-transform.  

9.3 Testing significance of trend lines

In exhibiting curves like those of the left side of Fig. 9.3 above, t h e
exponential curve was used. Growth of large vertebrates may better b e
described by a closely related curve, the geometric (see Fig. 11.1 and t h e
accompanying discussion). Either curve can be represented by the model o f
eq.(9.1) by letting λ  = ert or λ  = (1+r)t, as discussed in Chapter 11, so we use t h e
following simple model for a population growing at a constant rate.

                                                                  Nt = Noλ t                                                      (9.1)
where Nt represents abundance at time t, and λ  is a measure of the rate o f
change of the population. Taking natural logarithms converts this model to a
linear equation, so we expect the trend to be a straight line if the index used i s
the logarithm of observed numbers:

                                                  loge Nt = logeNo + t loge λ                                          (9.2)
We thus tend to plot logarithms of observations of abundance, and to do va r i ous
kinds of linear regression analyses in exploring the data. In the p r e s e n t
section, we will examine a number of sets of data on actual populations and t r y
to infer something about trends from simple regressions.

To study trend, we fit eq.(9.2) by linear regression methods, rewriting i t
as y = a +bx, where y = loge Nt, x = t, and b = logeλ . For purposes of calculation, t
will be used here as the sequence of years, 1,2,3,... We are mainly c o n c e r n e d
with the slope (b) and variance about regression, so that the observed
sequence of dates might serve equally well, i.e., we could use 1967, 1968, 1969,
etc. in regression calculations. However, this should not be done in p r a c t i c e
due to the prospect of introducing "roundoff" errors in the r e g r e s s i o n
calculations when the x-values are sizable numbers (i.e, one should use t h e
sequence 1,2,3.. for calculations and later plot data against the actual yea rs ,
1967, 1968, 1969). A key measure of variability is the "regression mean square" ,
or variance about regression, often written as MSreg. It can be calculated b y
fitting the linear regression and calculating:

                   MSreg = {Σ [yt - (a + bt)]2}/(n - 2)                                           (9.3)
In most instances, it will be desirable to check to see whether there is ev i dence
that the logarithms of the index data appear to change linearly with t ime,
suggesting a constant rate of change in the population. An easy way to do t h i s
is to fit a curve to the data, and test for a significant change in the va r i ab i l i t y
around the fitted line. The simplest such curve is the "quadratic" or second
degree polynomial. We now fit the function:

                                                                Y = a + bt + bt2                                           (9.4)
and calculate a variance as in eq.(3):

                                       MSquad =  {Σ [yt - (a + b1t + b2t2)]2}/(n - 3)                 (9.5)
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In this instance, we use n-3 "degrees of freedom", because another c o ns t a n t
(b2) has been estimated from the data. Actual fitting of eq. (9.4) is readily d o n e
by multiple regression. Many computer programs are available to do t h e
fitting, and most of the spreadsheet programs will provide such fits. An F-test
of significance can be calculated from the F-ratio:

                                                    F = 
SSLIN - SSQUAD

 MSquad
                                              (9.6) 

where SSLIN = (n-2)MSreg and SSQUAD = (n-3)MSquad, and significance of t h e
F-ratio is checked in tables of the F-distribution with 1 and n-3 degrees o f
freedom. These procedures are described in more detail in most i n t r oduc to r y
statistics texts, and in Chapter 6.

The test of eq.(9.6) can be applied with other alternative curves. Fo r
example, a third degree polynomial can also be fitted to the data by mu l t i p le
regression.  The equation is:

                                         yt = a + b1t + b2t2 + b3t3                                                   (9.7)
Because this is a more flexible curve than eq.(9.4) it will often appear to give a
better fit. However, once a departure from linearity is established, one r e a l l y
needs more information than can be derived from the curve alone in order t o
assess the situation. Estimates from eq.(9.3) for a number of species appear i n
Fig. 9.4. Cases where eq.(9.6) gave statistically significant results are denoted
by an asterisk (0.05 level of significance) or two asterisks (0.01 level o f
significance). A very high regression mean (0.250) square for elephant sea ls
results from the nonlinearity evident in Fig. 9.2, and that value is not s h o w n
in Fig. 9.4 because of the clear evidence that a different curve is appropriate.
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Fig. 9.4. Regression mean square values computed from eq.(9.3) for various species. A
single asterisk indicates significance at the 0.05 level for the test of eq. (9.6) and a
double asterisk indicates significance at the 0.01 level. Sources and scientific names
appear in Table 9.1.
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9.4 Assessment of trend data

 Fig. 9.4 shows a wide range of regression mean squares, and ind ica tes
that the evidence of curvil inearity does not seem to be associated w i t h
variability. Some of the likely sources of differences among species can b e
identified as follows. The mean square for grizzly bears has been assumed t o
result from the effect of environmental conditions on counts. In wet yea rs ,
bears can find sufficient food without spending much time in the open a n d
thus are very difficult to find. In especially dry years, they forage widely, a n d
counts tend to be higher in those years. The data used for Fig. 9.4 come f r o m
the study reported by Knight et al. (1995). Further analysis of the data y ie lds
an improved index and thus a smaller mean square. The variability in the Soay
sheep regression evidently results from environmental conditions. Boyd
(1974) described the pattern of a build-up for several years, followed by h e a v y
mortality under stress from weather and nutritional conditions. Only 7 y e a r s
of data are available for the George Reserve deer data set, so it is mainly o f
interest for the overall observed high rate of increase, and the curvature does
not seem to have a recognizable pattern.

Table 9.1 Sources and nature of data and scientific names for data used in Fig. 9.4
NAME NATURE OF COUNT SCIENTIFIC NAME SOURCE
ELEPHANT SEALS Births Mirounga

angustirostris
Stewart et al. 1994

GRIZZLY BEARS Females with cubs Ursus horribilis arctos Knight et al. 1995
SOAY SHEEP Total count Ovis sp. Boyd 1974
GEORGE RESERVE DEER Total Odocoileus virginianus McCullough 1983
 MONK SEALS Beach counts Monachus schauinslani Gilmartin and Eberhardt 1995
MANATEES Totals Trichechus manatus Eberhardt and O'Shea 1995
SEA LIONS Pup counts Zalophus californicus DeMaster et al. 1982
WOOD BUFFALO N.P.
BISON

Total population estimateBison bison Carbyn et al. 1993

FERAL HORSES Total counts Equus caballus Eberhardt et al. 1982
GRAY WHALES Population estimates Eschrichtius robustus Breiwick 1994
SENECA DEER Reconstructed pop. Odocoileus virginianus Hesselton et al. 1965
ALE ELK Total counts Cervus elaphus Eberhardt et al. 1996
FUR SEALS (DEC.) Total counts Callorhinus ursinus
BROWN BEARS Spawning stream countsUrsus horribilis R. A. Sellers, pers. comm.
LONGHORN CATTLE Total counts Bos bos Fredin 1984
YELLOWSTONE ELK Aerial counts Cervus elaphus Houston 1982
RED DEER Total counts Cervus elaphus Clutton-Brock et al. 1982
BISON Total counts Bison bison Fredin 1984
MUSKOX Total counts Ovibos moschatus Spencer and Lensink 1970
SERENGETI BUFFALO Population estimates Syncerus caffer Sinclair 1977
CALIF. SEA OTTERS Total counts Enhydra lutris
GRAY SEALS Births Halichoerus grypus Bonner 1975
CUSINO DEER Total Odocoileus virginianus Ozaga and Verme 1982
FUR SEALS (Inc.) Total counts Callorhinus ursinus Kenyon et al. 1954
PRYOR HORSES Total counts Equus caballus  Garrott and Taylor 1990

 The monk seal counts at Pearl and Hermes Reef are highly v a r i a b l e
because the seals occupy a number of small islets spread over a sizable a r e a
there and thus are difficult to reach and to count. Curvilinearity in the F r e n c h
Frigate Shoals data likely result from incomplete tallies in the early yea rs .
Evidence of curvilinearity in the Lisianski monk seal data (Fig. 9.5) seems to b e
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characteristic of many of the declining populations, including bison in Wood
Buffalo National Park, and the decreasing fur seal population. In many s u c h
populations, the causes of decline are unknown or imperfectly understood, a n d
likely vary over time, whereas an increasing population often is doing so i n
consequence of ample food and other resources, and thus is likely to exhibit a
smooth pattern.
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Fig. 9.5. Logarithms of beach counts of monk seals on Lisianski Island.

Somewhat erratic growth patterns may, however, also be evident i n
increasing populations, as is the case with manatees (Fig. 9.6). Very l i ke l y
some of the fluctuations result from conditions under which the counts w e r e
made, inasmuch as the counts may be made by divers and at times in t u r b i d
water (Crystal River).
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Fig. 9.6. Logarithms of counts of manatees at Crystal River (upper data  set) and Blue
Springs (lower data points).
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It seems quite possible that data on the right side of Fig. 9.4 may
approach the circumstance where the fluctuations may largely be associated
with the stochastic behavior of the underlying birth and death processes. In
several instances (muskox and bison in Fig. 9.3, fur seals (increasing), and
Seneca deer), there is a suggestion of an oscillatory pattern in the deviations
from linearity. Such oscillations may be a consequence of a changing age
structure (Keyfitz 1968 gave the theoretical basis) and are suggested by
simulations of longer sequences of observations (Eberhardt 1981). Detection of
such an oscillatory pattern is aided by plotting deviations from fitted curves as
in Fig. 9.7, which shows the pattern for the muskox data of Fig. 9.3.
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Fig. 9.7. Deviations from the exponential curve fitted to muskox data in Fig. 9.3.

9.5 A test for significant deviations from regression using replicate points.

The test for significant deviations from linearity used in Section 9.4
depends on fitting a curve and testing to see whether the improvement in f i t
might simply be due to chance. In some cases, replicate counts may b e
available, so that one can use the variability within years to test s i gn i f i cance
of deviations from linearity. The advantage here is that we do not need t o
specify an alternative model like the quadratic or cubic (which may very we l l
be the wrong model). Some counts of brown bears at spawning streams p rov ide
an example (Fig. 9.8). In this case, the test consists of making the u s u a l
analysis of variance to test for significance of the linear regression (Table
9.2), and then using the pooled variance of individual observations w i t h i n
years to estimate "pure error" (Draper and Smith,1981). The data f o r
calculation of pooled error appear in Table 9.3. A sum of squares of dev ia t ions
from the mean is calculated for the data in each year where there are two o r
more observations and these values are summed to give an overall sum o f
squares, which is subtracted from the "residual" sum of squares in Table 9.2 t o
yield the "lack of fit" sum of squares (i.e., the variability not accounted for b y
"pure error"). The degrees of freedom used to calculate pure error (32) i s
similarly subtracted from the degrees of freedom for residual error to get t h e
degrees of freedom used to calculate a mean square for "lack of fit". An F- ra t io
as shown in Table 9.2 would be used to test significance of the lack of fit, b u t



9.15

the F-test for regression (1.14) is not significant, so there is no real point i n
going on to test lack of fit, other than to illustrate the method.
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Fig. 9.8 Logarithms of counts of brown bears on salmon spawning streams.

Table 9.2 Test of significance for deviations from regression

d f SS M S F

Regress ion 1 0.02415 0.02415 1.14655
Residual 39 0.82140 0.02106
Total 40 0.84555

Lack of fit 32 .4753 0.01485
Pure error 7 0.3461 0.04944

Another example of variability of individual counts is provided by some
gray whale data (Breiwick 1994). In this case, replicate counts over time could
not be made, as the whales are counted as they migrate past a s h o r e l i n e
counting station. However, estimates of sampling error are available (Table
9.4) and can be used to assess the mean square error obtained in l o g- l i n e a r
regression analysis of the data. Because the standard errors of ind iv idua l
estimates were calculated in terms of number of whales, a t r a n s f o r m a t i o n
needs to be used to change to variability on the logarithmic scale. Using t h e
delta method, we find:

                            V(ln x) = V(x)(
1
x )2 = Coef. var.2(x)

Plotting the coefficients of variation against the estimates shows l i t t le
evidence of correlation, so the average coefficient may be a reasonab le
estimate of overall variability. The squared value (0.0027) is subs tan t ia l l y
smaller than the mean square about regression (0.0170) so it seems q u i t e
evident that there is a significant departure from linearity, even though t h e
quadratic and cubic mean squares are little different from the mean s q u a r e
from linear regression (Table 9.4). Inspection of the data (Fig. 9.9) suggests t h e
possibility that the population might have reached an equilibrium leve l .
However, the marked decrease in years 4 and 5 suggests the possibility o f
shifts in the migration pattern.
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Table 9.3 Data for computation of "pure error" for brown bear counts
L oga r i t h m Sum of Deg. of

Y e a r B e a r s / h o u r b e a r s / h r squ a r e sf reedom
3 33.85 3.5219
3 64.04 4.1595
3 61.88 4.1252
3 61.2 4.1141
3 55.24 4.0117 0.2819 4
4 68.7 4.2297
4 59.3 4.0826
4 67.9 4.2180
4 65.3 4.1790 0.0134 3
5 49.4 3.9000
5 51.4 3.9396
5 61.6 4.1207
5 47.4 3.8586
5 52.45 3.9599 0.0400 4
6 51.88 3.9489
7 45.14 3.8098
7 62 4.1271
7 48.13 3.8739
7 49.58 3.9036
7 51.21 3.9359 0.0572 4
8 62.06 4.1281
8 66.59 4.1986
8 62.32 4.1323
8 66.88 4.2029
8 65.03 4.1748
8 64.58 4.1679 0.0051 5
9 54.17 3.9921
9 67.49 4.2120
9 66.67 4.1998
9 62.8 4.1400
9 61 4.1109
9 62.42 4.1339 0.0311 5
10 48.68 3.8853
10 51.47 3.9410
10 58.51 4.0692
10 57.65 4.0544
10 54.08 3.9905 0.0238 4
11 61.12 4.1128
11 55.15 4.0101
11 68.29 4.2238
11 61.52 4.1194 0.0229 3

Sums 2386.0800 166.2194 0.4753 32
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Table 9.4. Estimate of total numbers of gray whales along with standard errors
of estimate and coefficients of variation.

YR ESTIMATE S.E. COEF. VAR. LN ESTIMATE
1 1 2 9 2 1 9 6 4 0.075 9.4666
2 1 2 0 7 0 5 9 4 0.049 9.3985
3 1 2 5 9 7 6 4 0 0.051 9.4412
4 1 0 7 0 7 4 8 7 0.045 9.2787
5 9 7 6 0 5 2 4 0.054 9.1860
6 1 5 0 9 9 6 8 8 0.046 9.6224
7 1 4 6 9 6 7 3 1 0.050 9.5953
8 1 2 9 5 5 6 5 9 0.051 9.4692
9 1 4 5 2 0 7 9 6 0.055 9.5833

1 0 1 5 3 0 4 6 6 9 0.044 9.6359
1 1 1 6 8 7 9 1 0 9 5 0.065 9.7338
1 2 1 3 1 0 4 6 2 9 0.048 9.4807
1 3 1 6 3 6 4 8 3 2 0.051 9.7028
1 8 2 1 4 4 3 1 1 8 2 0.055 9.9732
1 9 2 0 1 1 3 9 2 7 0.046 9.9091
2 1 2 0 8 6 9 9 1 3 0.044 9.9460
2 6 1 7 6 7 4 1 0 2 9 0.058 9.7798
2 7 2 3 1 0 9 1 2 6 2 0.055 10.0480

1 9 9 11 9 8 71 9 8 31 9 7 91 9 7 51 9 7 11 9 6 71 9 6 7
9.0

9.2

9.4

9.6

9.8

10.0

10.2

L
O

G
A

R
IT

H
M

 O
F

 E
S

T
IM

A
T

E

Fig. 9.9 Logarithms of counts of gray whales. Data from Breiwick (1994).

9.6 A test for linearity based on the lowess method

The test for deviations from linearity based on fitting a quadratic curve to t h e
data uses the difference between sum of squared deviations about the l o g l i n e a r
regression line and that about the quadratic curve, and tests this d i f f e r e n c e
against the regression mean square about the quadratic, using an  F-test. S u c h
a test can also be used with the cubic equation (or any suitable a l te rna t i ve ) ,
with the only change being that of reducing the degrees of freedom to ad just
for the extra parameters fitted. An alternative is to consider curves fit with a
"locally weighted regression" technique (variously called "loess" or "lowess",
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and due to Cleveland 1979). Weighted linear regressions are fit at each point o n
the graph (e.g., if the data span 30 years, then such regressions are fit at e a c h
of the 30 years) by selecting data points in the immediate neighborhood o f
each point on the x-abcissa. The number of points in each such n e i g h b o r h o o d
is usually taken to be about 30% of the total number of observations. Weights
diminish by a cubic function, so points very near to the selected point get b y
far the most weight. The  individual fitted regression line determines only t h e
y-value for the selected abcissal value. In effect, the technique behaves m u c h
like a moving average, but has various advantages.

In principle, one might extend the test of linearity to the lowess
technique, but the fitting procedure is such that there is no way to ca lcu la te
an effective number of degrees of freedom. We can, however, utilize t h e
bootstrapping technique to see whether the two sums of squares (about t h e
loglinear regression and about the lowess curve) seem likely to d i f f e r
significantly. Two approaches to bootstrapping regression data have b e e n
described by Efron and Tibishirani (1993). One approach depends on taking a
random sample, with replacement, of the observed data point-pairs a n d
recalculating the regression line. This method may not work well with the da ta
considered here unless there are a substantial number of points. With f e w e r
data points, repeated selection of the same data  point occurs often enough so
that the lowess process fails. In the second approach, one fits a regression l i n e
and calculates deviations from the line. Random samples of the deviations a r e
then taken, again with replacement, and these deviations are then added to t h e
values calculated from the original regression line at each of the observed x -
values. Regression lines are then calculated from the new data sets. Th is
method works satisfactorily with a limited number of data points, and t h u s
might be used to compare a loglinear fit with one obtained by the lowess
method.

9.7 Confidence limits from bootstrapping

The usual linear regression model assumes a normal distribution o f
deviations about the regression line as a basis for calculating con f i dence
limits and tests of significance. The logarithmic transformation does seem t o
usually result in a symmetric distribution of deviations from regression, but i t
may be worthwhile to use bootstrapping to obtain confidence limits that do n o t
depend on the assumption of normality. As noted in Section 9.6, Efron a n d
Tibishirani (1993) describe two approaches to bootstrapping in reg ress ion .
One, which they call "parametric" bootstrapping, depends on fitting the u s u a l
regression model to calculate individual deviations from regression, and t h e n
taking random samples of these deviations with replacement (same sample size
as the original data) and adding this set of deviations to the y-values p red ic ted
by the original regression equation to generate a new set of "bootstrap data". A
regression line is fit to this data and the parameters recorded. Doing this, say ,
1,000 times provides the basis for calculating confidence limits on t h e
parameters. For 95% limits we use the 25th and 975th ordered value of a
parameter. The original set of x-values is used throughout. This approach t h u s
makes it feasible to work with small data sets -- say 5 to 10 x,y pairs. A
disadvantage is that the method assumes that the linear model is exactly true.

An alternative ("nonparametric" regression bootstrapping) takes n
random samples with replacement of the x,y pairs and computes n e w
regressions. The disadvantage is that, in small data sets, the samp le
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observations may pile up on a few x-values, yielding strange results. T h e
advantage is that the method does not assume the linear model holds exact ly .
The two methods were tested on a number of data sets from increasing a n d
decreasing populations, and compared with confidence limits obtained f r o m
the usual regression equation. The nonparametric approach gave results (Fig.
9.10) that agree very well with the usual 95% regression limits on slope of t h e
loglinear regression line. Most of the samples had n > 10, but two feral h o r s e 
populations had only 5 and 8 observations, respectively (Table 9.5).  T h e
nonparametric interval for brown bears is somewhat smaller than that f r o m
the standard regression calculations, and this may reflect the fact that t h e
brown bear population may not have been changing over the years studied
(Fig. 9.8).

Fig. 9.10 Comparison of 95% confidence intervals on the regression slope (b) calculated b y
ordinary regression methods to those obtained from nonparametric regression.

Using parametric regression bootstrapping with the same data sets
gives confidence limits appreciably smaller than those from standard
regression (Fig. 9.11). The question of which set of limits to use needs further
consideration, but the good agreement of the nonparametric and standard
regression limits might lead one to prefer either over the parametric
regression, particularly in that these two approaches are more conservative
(wider limits) than the parametric approach.

When sample sizes are, say, 10-15 or larger, a worthwhile approach is to
compute confidence limits both by nonparametric regression bootstrapping,
and by the usual approach (readily available in EXCEL). If they agree, then
there should be little reason for concern.  Both of the bootstrap methods
support the notion that regression estimates of population rate of change are
unbiased. Efron and Tibishirani (1993) indicate that close agreement between
the mean of bootstrapped data and the value obtained from the original
approach indicates an unbiased estimate. Table 9.5 shows that the 3 methods
give essentially the same values for rate of increase.
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Fig. 9.11 Comparison of 95% confidence intervals on the regression slope (b) calculated by
ordinary regression methods to those obtained from parametric regression.

Table 9.5 Slope estimates from log-linear regression compared to those from bootst rap
samples of parametric and nonparametric regressions. The close agreement ind ica tes
unbiased estimation (Efron and Tibishirani 1993).

PARA NPARA
SPECIES SLOPE MEAN MEAN
OTTERS 0.0521 0.0523 0.0524
GRAY WHALES 0.0257 0.0259 0.0259
CRYSTAL R 0.0968 0.0971 0.0975
BLUE SPGS 0.0793 0.0791 0.0793
SENECA DEER 0.4115 0.4151 0.4138
MUSKOX 0.1463 0.1461 0.1465
GRAY SEALS 0.0741 0.0742 0.0743
BISON 0.2068 0.2068 0.2064
FUR SEALS 0.0824 0.0825 0.0833
BEATY HORSES 0.2447 0.2438 0.2438
LISIANSKI - 0 . 0 2 6 0 - 0 . 0 2 6 0 - 0 . 0 2 5 7
PRYOR HORSES 0.1854 0.1855 0.1854
BROWN BEARS 0.0167 0.0165 0.0159
FUR SEAL DEC - 0 . 0 2 6 3 - 0 . 0 2 6 4 - 0 . 0 2 6 1

9.8 Alternative estimates of rate of population change

In Chapter 12 two very simple models (Section 12.4) are proposed f o r
evaluating populations from which known numbers of individuals a r e
removed at various times. The log-linear approach of the previous sec t ions
(eq. 9.2) is not useful in such circumstances, so it is worthwhile to cons ide r
alternative ways to establish rates of change. These make use of ratios o f
successive observations. We first consider using the methods for data wi t hou t
removals, and thus can compare them with the regression approach. The bas i c
idea comes from the simple relationship (eq. 9.1):

                Nt = λNt-1
where λ  is the multiplier needed to project a population at time t-1 to time t ( w e
assume an interval of one year, with observations taken at the same time e a c h
year). If we want to estimate λ  from a sequence of years, we can consider 3
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ratio estimates (Eberhardt 1987) where xi  represents population size in o n e
year and yi  the size in the next year:

The mean of individual ratios                  λ̂   = 
Σ(yi /xi )

n                                            (9.7) 

Ratio of sums                                               λ̂   = 
Σyi
Σxi

                                                    (9.8) 

Regression through the origin              λ̂   = 
Σyixi

Σxi2
                                                 (9.9) 

Because the individual observations other than the first and last a p p e a r
twice in a sequence of years, one can get spurious results in statistical ana l ys i s
of such data (Eberhardt 1970). We thus resort to bootstrapping here. Using t h e
data previously used to evaluate the regression approach (Table 9.5), 1,000
bootstraps were used with the estimates of eqs. (9.7) through (9.9). Bootstrap
bias calculations were made, along with comparisons with the rate of c h a n g e
from the regression method (using λ  = eb, where b is  slope of the l o g l i n e a r
regression). All 4 sets of estimates were highly correlated (Table 9.6).

Table 9.6. Correlations between four methods of estimating rate of increase.
LOGLINEAR MEAN SUMS REGR

LOGLINEAR 1
MEAN 0.992 1
SUMS 0.983 0.986 1
REGR 0.957 0.961 0.990 1

The mean of the individual ratios had the smallest relative bias.  a n d
deviated the least from the loglinear regression estimates. Relative bias w a s
calculated  as:

                 Bias = 
λ orig - λ boot

λ orig
                                               (9.10) 

where λboot is the mean of 1,000 bootstrap estimates and λ orig is the es t imate
from log-linear regression. The average of absolute values for relative b i as
was 0.020 for the method of means [eq.(9.7)], 0.107 for method of s u m s
[eq.(9.8)], and 0.130 for the regression method [eq.(9.9)].

Confidence intervals (95%) were also calculated from bootstrap resu l ts ,
but were much wider than the regression estimates and poorly correlated w i t h
those estimates (Fig. 9.12). Excluding the Beaty horse data (n = 8), the ratio o f
confidence intervals (Fig. 9.12) was about 3.5 to 1, i.e., confidence i n t e r v a l s
from the mean of individual ratios [eq.(9.7)} were nearly 4 times wider t h a n
those from log-linear regressions. This raises an issue that needs f u r t h e r
attention. Why should the bootstrapping confidence intervals be so m u c h
wider than those from linear regression? The answer appears to lie in the f a c t
that bootstrapping is based on random samples with replacement of i nd i v idua l  
observations. In this case, we have to deal with successive pairs o f
observations in order to get the ratios, so the pairs were bootstrapped, and t h i s
gives unsatisfactory results, as shown in Fig. 9.12.
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Fig. 9.12. Relationship between confidence interval widths (95%) calculated by log- l inear
regression and those from a ratio method [Eq. (9.7)}.

Example 9.5  A census using ratio estimation

 An example of ratio estimation in an actual census is provided  by studies of the
abundance of the sea otter (Enhydra lutris) along  the California coast. Sea otters
then occupied about 150 miles of the  California coastline, and are almost always
found swimming or resting  (in kelp beds, usually) just off the shoreline. A
number of aerial  censuses were conducted by employees of the California
Department  of Fish and Game. Since only a fraction of the otters present are
observed in aerial counts, an ingenious use of auxiliary counts  (devised by
D.J.Miller) was used to correct the aerial counts by  what amounts to rat io
estimation. On a sample of shoreline areas,  observers on vantage points (we l l
above sea level, where possible)  made counts on well-defined areas. These were
then used to correct  aerial counts of the same areas.   

 In later development of the method, aerial photos were made in advance  of the
census to map kelp beds. Using the maps, shoreline ("ground truth")  counters
located animals in a well-defined and readily visible area,  and made a record of
those animals present in the sample areas at the  time the aerial observers
passed the counting site. The aerial observers  also plotted all otters seen on
identical maps. As soon as a day's flight  was completed, the aerial and ground
observers went over the maps  together to establish which animals were seen by
both air and ground  observers, and which animals were not seen from the a i r .
Aerial  counts were made over the entire coastline occupied by otters, so  the data
can be used in a ratio estimate (Sec. 4.12).   

 The estimated total otter population is:

where YR is the estimate of total otter population, and XT is the
total aerial count. The ground counts (yi) are summed over the
sample  (n) of ground-truth areas, and divided by the sum of the
aerial counts  (xi) on the same areas. If it is assumed that the
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ground counts are made without error (an assumption that needs
further checking), then  the data conform to the standard
conditions for ratio estimation with  the exception that XT (the
total aerial count)  is subject to sampling error. Calculations
are otherwise straightforward, and as given in Ch.4. Table 9.5
gives data from the 1974 survey.  A total of 897 otters were
counted from the air, so we estimate the total  population from
the equation given above as:   

                                                            YR
^    = 

332
2 0 2  897 = 1474

and find the squared coefficient of variation to be:

 CV2(YR
^   ) = 

( 1 - f )
n   [cyy + cxx - 2cyx] = 

1
3 1  [1.966 + 1.216 - 2(1.4229)] =

0 .0109

 where we take f = 0, since an accurate value is not available.
However, an appreciable segment of the coast was included in the
ground counts, so that use of f would be appropriate here, if it
could be calculated.   

 Confidence limits are readily calculated by computing a standard

error as (.0109)1/21474 = 159.89, and using Z05 = 1.96  giving:   

                              YR
^    =  -+  Zo5 s(YT) = 1474  -+   1.96(159.89)  or,

                                         1172 < YR < 1776 sea otters.

Aerial survey (xi) and ground counts (yi) of sea otters along the California coast.

 .      June 25      June 26                     June 27                              

 .      xi          y  i           x  i          y  i        x i          y  i   

         2       4       1       6       1       1
         1       1       9       10      6      14
         0       4       0       19      5       7
        0       6       13      19      1       6
       37      50      12      8       4       5
        6       9         5       8       2       8
        9       10       6       6       2       1
        3       3         5       9      37     47
        1       1         0       5
        8       13      1       1
        0       8      11     14
                         14      29
 _____________________________________
       67   109    77      134     58      89
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9.9 Criteria for regression fits

Testing for curvil inearity in regression lines was discussed in some
earlier sections (Sec. 9.3, Sec. 9.5). When one fits a regression line like t h o s e
summarized in Fig. 9.4, it is important to have other ways to evaluate the f i t .
Regression mean squares provide a useful measure of variability about t h e
line, and can be supplemented by the widely-used R2 criterion. For a s imp le
regression line with one independent variable, the square root of t h i s
quantity gives the well-known correlation coefficient, and R2 is p e r h a p s
better known when used in the multiple regression analyses that will b e

described in a later section. However, the simple linear regressions serve t o
illustrate the interplay between regression mean square and R2. The R2

criterion is:

where yi  is the independent variable, y
_

   is the mean of the yi  and ŷ  is t h e

"predicted" value from the regression equation. Often, R2 is described as t h e
proportion of the variance in the independent variable "accounted for" by t h e
fitted regression line. The two expressions in eq.(9.11) are connected by t h e
basic identity in the analysis of variance in regression, i.e.,

                                Σ(yi - y
_

 )2  = Σ( ŷ i  - y
_

 )2        +     Σ(yi  - ŷ i )2

                                Total S.S.   = regression S.S. + Residual S.S.

In eq.(9.11), the left-hand form is that commonly used (Draper a n d
Smith 1998:138). The equivalent right-hand expression was recommended b y
Anderson-Sprecher (1994) because it provides a convenient interpretation o f
R2 written as:

            R2 = 1 - 
RSS(ful l )

RSS(reduced) 

where RSS(full) denotes the regression sum of squares for the full model a n d
RSS(reduced) can be interpreted as the sum of squares for the model reduced t o

its minimal form, i.e., the expected value of y is βo, estimated by y 
_

.
 
 One

advantage of this expression is that it emphasizes that model compar i sons
using R2 should be made with nested models, i.e., a series of r e g r e s s i o n
equations with two or more independent variables so that the number o f
parameters p = 2,3,4, ... . Another advantage is that

                                        1 -  R2 = 
RSS(ful l )

RSS(reduced) 

states the fraction of variability not accounted for by regression. Because a t       
least stochastic fluctuations are always present in trend data, this exp ress ion
serves as a reminder that R2 cannot become unity.

When R2 is large, it is evident that the regression line does a good job o f
predicting the counts. This does not necessarily demonstrate validity of t h e
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index as some extraneous factor may be exerting a major influence on t h e
counts. Usually, however, a high R2 is reassuring. A key element i n
demonstrating validity of an index is an independent estimate of the t re n d .
Such an estimate may be available from reproductive and survival data. Thus i f
two sources, trend index and reproductive and survival data produce much t h e
same estimate of λ , that result is particularly reassuring.

Confidence intervals on parameters and on predictions from r e g r e s s i o n
lines depend on the assumption of a normal distribution of deviations from t h e
regression line with constant variance about regression. When popu la t ion
data are being considered, this may be an uncertain assumption. It is t h u s
desirable to resort to the bootstrapping technique (Efron and Tibshirani 1993)
as a check on confidence intervals generated by regression theory. Fo r
regressions based on modest numbers of data points, a "parametric r eg ress ion "
bootstrap is recommended. The usual regression line is fitted and dev ia t ions
from that line are bootstrapped. That is, at least 1,000 random samples of size n
(n = no. of points used to fit the regression line) are drawn from the set o f
deviations, with replacement, and are used to construct new regression da ta                                  
sets (by adding the sample of deviations to the estimated regression line). A
new regression line is fitted to each such data set and used to estimate t h e
parameter of interest (usually λ ). Confidence intervals are then obtained b y
counting in Bα /2 values from either end of the generated distribution o f
values, where B = no. of bootstrap samples and α  denotes the chosen level o f
significance (often α  = 0.05).

If bootstrapping is used, it furnishes an estimate of bias for the estimator o f
concern from the equation (Efron and Tibshirani 1993):

               bias^  B = θ̂ * (.)  -  t(F̂ )                                  (9.12)

Here, θ̂  * (. ) is the mean of the bootstrap estimates of the parameter of i n t e r e s t

(often λ ) and t ( F̂ ) denotes the same parameter estimated from the o r i g i n a l
data. Results from this criterion may thus yield an indication of problems w i t h
the trend index.

How should these two criteria be used? An interpretation of R2 w a s
given earlier as:

      R2 = 1 - 
RSS(ful l )

RSS(reduced) 

Here RSS denotes a regression sum of squares. The numerator pertains to t h e
fitted model, while the denominator consists of the variance about the mean o f
the observations (thus "reduced" to a minimum). Usually the sample size i s
large enough so that the ratio amounts to comparing the variance of the f i t ted
model to that in the data (i.e., the degrees of freedom are not different e n o u g h
to matter much). Hence it is clear that R2 and the regression mean square a r e
closely related. The relationship can be examined by plotting (Fig. 9.13) R2 a n d
regression mean squares for the data of Fig. 9.4.
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Fig. 9.13. Relationship between R2 and regression mean square for data used in Fig.
9.4. Various sets of points described in text.

The solid points show what seems likely to be the expected r e l a t io n s h i p
between R2 and the regression mean square. The cluster at the right t o p
contains  those data sets where there is a significant curvature which i n f l a tes
the regression mean square. The points represented by open circles r e p r e s e n t
cases where there appears to be a pattern in the deviations which is q u i t e
dramatic in some instances. Plotting deviations from regression, a s
recommended earlier (see Fig. 9.7 and Fig. 9.14), will usually make the n o n -
randomness of the deviations evident. All of the cases shown here are based o n
simple log-linear regressions. Very likely a detailed investigation of t h e
underlying circumstances might turn up significant auxiliary var iab les .
Considering the solid points at the left of the figure, it appears that most of t h e
variability is accounted for by the simple regression. R2 thus appears most
informative in this situation.

Evaluating the pattern in deviations from regression can be aided b y
the Durbin-Watson test (Draper and Smith 1998). This simple test depends o n
the fact that the squared difference between successive deviations w i l l
approximate the variance of the deviations if the pattern of deviations i s
random. The test is:

d = 
Σ  (eu -  eu -1)2

Σ  eu2
                                                    (9.13) 

where the summation in the numerator runs from u = 2 to n, and that in t h e
denominator runs from 1 to n. It can be shown that the ratio, d, has a n
expected value of 2 under a random pattern. Draper and Smith (1998) note t h a t
0 <  d <   4, and give tables of significant deviations from the expected value of 2  
for different sample sizes. Various statistical packages produce the D u r b i n -
Watson test on residuals, but the test is easy to compute and thus w o r t h
calculating directly once one has the residuals from regression ( read i l y
available with the spreadsheet regression calculations). Three of the sets o f
data in Fig. 9.13 show significance at the 1% level from the Durbin-Watson test.
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The pattern of deviations for these three species appears in Fig. 9.14, w h e r e
the correlation of successive observations is quite evident.
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Fig. 9.14 Pattern of deviations from loglinear regression for 3 species. All 3 sets of data
are significant at the 1% level with the Durbin-Watson test for serial correlation.

The results above thus suggest several steps in appraising l o g l i n e a r
regressions of trend data:

1) Test the data for curvilinearity.
2) Compute the regression mean square and R2.
3) Examine the pattern of deviations from regression over time, and ca lcu la te
the Durbin-Watson test..

It may be helpful to compare the results with the data of Fig. 9.13. Most
of the data points there conform to the above steps, but not all. Three of t h e
open circles (Kure monk seals, San Miguel sea lions and gray whales) do not f i t
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in, but plotting the residuals suggests that the data are quite erratic, and t h a t
there may be some other factors involved that need to be further invest igated.
Significant curvil inearity (3 points on the upper right of Fig. 9.13, Crystal
River manatees, French Frigate monk seals, and George Reserve deer) a lso
indicates a need to look further at the data, inasmuch as the c u r v i l i n e a r i t y
may well indicate a significant change in trend. Table 9.7 gives the data o n
species shown in Fig. 9.13. The very high R2 values shown by a number of t h e
data sets suggest that the variability is mainly a function of s tochast ic i ty .
Bison, musk oxen, Cusino deer and Pryor wild horse populations w e r e
essentially counted in their entirely, while the Seneca deer population w a s
reconstructed from removals that were known almost completely.

Table 9.7 Data on loglinear regressions used in Fig. 9.17. Data ordered by regression mean
squares. Population sizes are rough estimates in a number of cases.

SPECIES NUMBERS 0BSNS SLOPE Lambda MSreg R-sq
GRIZZLY BEARS 400 1 8 0.039 1.040 0.068 .409
SOAY SHEEP 1000 2 0 0.026 1.026 0.062 .295
GEORGE RESERVE DEER 7 0 7 0.488 1.629 0.061 .956
PEARL & HERMES MONK SEALS 150 1 6 0.050 1.051 0.052 .606
FFS MONK SEALS 600 2 2 0.062 1.064 0.048 .882
CRYSTAL RIVER MANATEES 150 2 1 0.097 1.102 0.043 .912
LISIANSKI MONK SEALS 300 3 5 -0.029 0.971 0.036 .714
LAYSAN MONK SEALS 300 3 4 -0.034 0.967 0.028 .812
SAN MIGUEL SEA LIONS 8000 1 5 0.064 1.066 0.025 .603
WOOD BUFFALO N.P. BISON 5000 1 9 -0.052 0.949 0.021 .849
BLUE SPRINGS MANATEES 4 0 1 9 0.079 1.082 0.021 .92
BEATY HORSES 400 8 0.245 1.277 0.018 .959
GRAY WHALES 15000 1 8 0.026 1.026 0.018 .718
SENECA DEER 400 1 1 0.411 1.508 0.017 .992
ALE ELK 7 0 1 1 0.165 1.179 0.015 .956
FUR SEALS (DECREASING) 180000 2 4 -0.026 0.974 0.013 .851
KURE MONK SEALS 100 1 2 0.026 1.027 0.013 .443
LONGHORN CATTLE 2 0 7 0.302 1.353 0.010 .981
YELLOWSTONE ELK 7000 8 0.191 1.210 0.009 .964
RED DEER 1600 2 2 -0.010 0.990 0.008 .354
BISON 160 1 4 0.207 1.230 0.008 .99
MUSKOX 120 1 5 0.146 1.157 0.004 .991
SERENGETI BUFFALO 50000 1 1 0.064 1.066 0.003 .969
CALIFORNIA SEA OTTERS 1600 1 3 0.052 1.054 0.003 .94
GRAY SEALS 1200 1 6 0.069 1.072 0.003 .975
CUSINO DEER 8 0 5 0.370 1.448 0.002 .995
FUR SEALS (INCREASING) 130000 1 2 0.082 1.085 0.002 .984
PRYOR HORSES 120 5 0.185 1.204 0.000 .99

9.10 Using auxiliary variables with trend data

In some cases, the use of auxiliary variables may serve to reduce t h e
regression mean square, i.e., we add independent variables other than t i m e
and use a multiple regression equation. One such model was used to s tudy
trends in manatee numbers by Garrott et al. (1994,1995). They represented t h e
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expected number of manatees counted at any given site under a ve r a g e
conditions at time t as M(t), and assumed M(t) remains constant over t h e
annual counting period (given average conditions) and denoted it as Mi f o r
the ith year. Mi is assumed to be proportional to the true population leve l .
C[t,X(t)] then represents the expected number of manatees counted at time t ,
given conditions X(t), where X(t) is a vector of covariate values prevailing a t
time t, leading to the model:

        C[t,X(t)] = Mi R[t,X(t)]                                                    (9.14)

where the function R( ) is a rate function that takes the value unity w h e n
conditions are average. Under good counting conditions R( ) > 1 and u n d e r
poor conditions R( ) < 1. If the rate function is assumed to be of the form

        R[t,X(t)] = exp[x(t)'β]
where x(t) is the vector of covariates and β is a vector of r e g r e s s i o n
parameters, then taking logarithms (base e) gives:

    ln C[t,X(t)] = ln Mi + x(t)'β
One can then use multiple regression to study the effect of various covar ia tes
(auxiliary variables). The general formulation is widely used in s u r v i v a l
studies as "Cox's proportional hazards model" (Cox 1972) and has also been used
to take auxiliary variables into account in population estimation p rocedures .
The main interest in eq.(9.14) is for studying population trend. In order to do
so, Mi needs to be expressed as a function of time, usually as Mi = N0λ t so t h a t
the final equation becomes:

                                       ln C(t) = ln N0 + t ln λ  + x(t)'β                                           (9.15)
Compare this with eq.(9.1) and (9.2).

The underlying model is thus assumed to have the form:

                                 y = βo + β1x1 + β2x2 + β3x3 + . . . + βp-1xp-1                            (9.16)

where y = ln C(t), x1 = t, βo = ln No, β1 = ln λ , x2 .... xp-1 are the
auxiliary variables, and there are p parameters to fit with multiple
reg ress ion .

The use of regression mean square, R2 and a bias criterion w e r e
discussed in Sec. 9.9. Two further criteria have been used for evaluation o f
models, Mallow's Cp for multiple regression models (Draper and Smith 1981)
and Akaike's Information Criterion (AIC) for models where likelihood r a t i o
tests are appropriate (Lebreton et al. 1992, Burnham and Anderson 1996). T h e
Cp statistic is calculated as (Draper and Smith 1998:332):

                                       Cp = RSSp/s2 - (n-2p)                                                       (9.17)

where RSSp is the residual sum of squares in a multiple regression model based

on p parameters, n is the number of observations and s2 is the residual m e a n
square from the equation with the largest number of parameters in the set o f
equations evaluated. The method thus depends on having a range of aux i l i a r y
variables available for study and essentially assumes that this set of va r i ab les
includes those involved in the "true" underlying regression model. Draper a n d
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Smith (1998:331) suggested plotting residual mean squares against the n u m b e r
of parameters (p) for a sequence of regression models as a way to estimate a n
asymptotic value that may approach the "true" value σ2, which is then used a s
s2 in eq.(9.17). They noted that large samples and a sizable number o f
candidate variables should be available for this approach to be valid.

Burnham and Anderson (1996) gave the Akaike (AIC) criterion as: AIC =
-2(log-likelihood) + 2p where p is again the number of parameters and t h e
log-likelihood ratio is calculated from the maximum likelihood estimates o f
parameters in two candidate models. In theory, the method requires that a
"global" set of models be identified and that this set contains the "true" model
according to Burnham and Anderson (1996). A series of applications of AIC f o r
survival analysis was provided by Lebreton et al.(1992) and Burnham a n d
Anderson (1996) provided a further example. Because regression models a r e
used here for analysis of indices, the Cp statistic seems useful. Burnham a n d
Anderson (1996) discuss the analogous features of AIC and Cp. Much m o r e
detail is available in the book by Burnham and Anderson (1998) where it i s
claimed that the set of models considered does not need to include the “ t r u e ”
model.

Example 9.6 Trend indices with auxiliary variables.

Two examples of trend indices of the use of auxiliary data
illustrate the approach of the previous section. One uses the data
on manatees studied by Garrott et al. (1994, 1995). The other
considers data on the Yellowstone grizzly bear population.
Background data for both species appear in the Case Histories.

Garrott et  a. (1994, 1995) evaluated a sizable number of
potential auxiliary variables, but it appears that year and DD10
(cumulative heating days summed for 10 days previous to the aerial
counts of manatees in warm-water refugia) may serve as well as
larger sets of temperature variables (Eberhardt, Garrott and
Becker1999). The model assumed for the study was the "proportional
hazards" model of eq.(9.15), fitted by multiple regression
[eq.(9.16)]. R2 was about 0.60 for several versions of the overall
multiple regression analyses. A difficulty with the results is
that the estimated rate of growth of the manatee population
exceeded that believed likely (Eberhardt, Garrott and Becker
1999), and estimated from reproductive and survival data
(Eberhardt and O'Shea 1995). An alternative approach used
regression of repeated counts within years on DD10 for a
covariance adjustment (Snedecor and Cochran 1967), as detailed by
(Eberhardt, Garrott and Becker 1999).

The alternative approach suggested that the population
remained relatively constant over recent years, in accord with the
conclusion of Eberhardt and O.Shea (1995). Plotting deviations
from the multiple regression fit (Fig. 9.15) suggests that some
factor not accounted for in the model may have influenced the
trend. As a check on the use of ordinary multiple regression, a
nonparametric bootstrapping study was conducted. There were 103
data points in the manatee data set. These were randomly sampled
by taking n = 103 random samples with replacement and calculating
a multiple regression on each such sample. Doing this 2,000 times
yielded estimates and percentile confidence limits essentially the
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same as those given by ordinary multiple regression. The usual
regression program gave an estimate of 0.0958 for the regression
slope with a 95% confidence interval of 0.074 to 0.118 while
bootstrapping produced a mean estimate of 0.0953 with 95%
confidence interval of 0.076 to 0.115. The bias estimate of

eq.(9.12) is thus bias
^

 B = 0.953- 0.0958 = - 0.0005, so there is
no evidence from the bootstrapping about problems with the
regression approach.
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Fig. 9.15 Deviations from a multiple regression model fitted to manatee data.

The Yellowstone grizzly bear data  yielded higher values of
R2 and used 3 auxiliary variables: year, frequency of sighting of
given family groups, and April snow depths in the previous year.
The index variable was counts of "distinct families", i.e., of
females with cubs-of-the-year seen in the summer (Knight,
Blanchard and Eberhardt 1995). The model thus was:

       ln(count)=βo+β1(year)+β2(frequency)+β3(snowpack)                    (9.18)
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Fig. 9.16. Observed (solid points) and predicted values (open circles) of logarithms o f
counts of "distinct families" of grizzly bears in Yellowstone National Park and environs.
Aberrent 1985 value is circled.
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This model yielded an R2 of 0.75 using data from 1976 to
1997. Comparison of values calculated from the regression equation
and observed counts (Fig. 9.16) suggests that the observed value
in 1985 was somehow aberrant. Without this value, R2 = 0.85.  A
variety of additional variables were examined in multiple
regressions, including squared terms for year and frequency of
sighting as used in the manatee studies of Garrott et al. (1994,
1995). None of these additional variables appeared to provide
useful fits. Mallow's Cp [eq.(9.17)] was calculated (Table 9.8) by

plotting s2  against number of variables included in the
regression as recommended by Draper and Smith (1998:331). This
suggested a value for s2 (0.03) from the trend of calculated

regression mean squares. Table 9.8 also includes 1 - R2 as a
measure of the proportion of variance not accounted for by the
regression lines. The three measures show essentially the same
trend with the number of parameters estimated (p). Another
reassuring aspect of the revised index is that there is now little
evidence of curvilinearity in the residuals (Fig.9.17) in contrast
with an earlier index calculation using only year and frequency of
capture (Eberhardt, Garrott and Becker 1999). There were no
significant correlations between the independent variables.

Table 9.8. Variation in three measures of regression model adequacy with increasing
number of parameters (p) included in the model. Data for a Yellowstone grizzly bear
trend index fitted to models of the general form of eq.(8).

p s   2 1 - R 2 C          p   

2 0 .053 0.36 15.6
3 0.039 0.25 7.6
4 0.039 0.23 7.2
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Fig. 9.17. Deviations from regression for the grizzly bear data of Fig. 9.16.

Bootstrapping was used to check the multiple regression
calculations, with essentially the same results as for the manatee
data. The year coefficient was 0.0287 with a 95% confidence
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interval of 0.017 to 0.040, while the mean of the bootstrap
calculations (2,000 replications) was 0.0291, with 95% confidence
interval of 0.018 to 0.040. The bias estimate of eq.(9.12) is thus
0.0291- 0.0287 = 0.0004, so there is again no evidence from
bootstrapping of problems with the regression approach. As with
the manatee data, the bootstrap frequency distribution was
symmetric about the estimate.

Example 9.7 An alternative approach to index models.

A different prospect for assessing trend data can be
illustrated by using data on wolves and moose from Isle Royale
(Peterson 1995), and a difference equation model used by Eberhardt
(1998). The model is:

V t = [1 + r1 ] Vt-1 - [
r1

Kz
 ]Vt-1z+1  - cHt-1                                   (9.19)

                                
Where Vt denotes ungulate prey abundance at time t, and Ht-1
denotes predator abundance the previous year, K is the asymptotic
population level of prey, z is a constant for the generalized
logistic equation (Eberhardt 1987), r1 is the maximum rate of

increase of prey, and c is the predation rate (prey taken per wolf
per year). The above model can readily be fitted by multiple
regression, giving the results of Fig. 9.18. DelGiudice et al.
(1997) indicated that the moose population on Isle Royale was
importantly affected by an epizootic of the winter tick
(Dermacentor albipictus) in 1989, so only the data series through
1988 is used here. R2 for the regression fit is 0.91, suggesting a
good fit.
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Fig. 9.18. Fit (solid line) of eq. (9.19) to observed data on moose (solid points) and
wolves (broken line) on Isle Royale.
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Bootstrapping was again applied to try to check validity of
the approach. However, the structure of the model forces use of
"parametric" bootstrapping, in which deviations from the fitted
model are randomly sampled with replacement, attached to the model
fitted to the original data, and refitted. This was done 2,000
times. Using nonparametric bootstrapping here poses problems,
because the model is fit to observations taken sequentially.
Results of the bootstrapping study appear to support the model,
giving mean values for the 3 coefficients close to those from the
original fitting. The original fit estimated λ = 1 + r1 as 1.309,
and bootstrapping gave 1.314. The second coefficient in the model
was -0.00126 from the original data while bootstrapping yielded an
average of -0.0013. The third coefficient (c) was -7.626 in the
original fit, while bootstrap data averaged -7.651. Frequency
distributions of the bootstrapped data gave wider 95% confidence
intervals than might be desired. Those for λ were about 1.19 to
1.44, and the interval for the moose kill per wolf (c) was -3.78
to -11.80. The interval on R2 was somewhat more satisfactory,
being 0.88 - 0.96. The Durbin-Watson test on residuals was 2.01,
indicating virtually no deviation from randomness. A plot of the
deviations (Fig. 9.19) does, however, emphasize the variability
evident in the fit to the later years evident in Fig. 9.18.
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Fig. 9.19 Residuals from the multiple regression fit of eq.(9.19) to Isle Royale moose
and wolf data.

One might thus be inclined to suppose that the model of eq. (9.19)
may give a useful representation of the data. Unfortunately, the
bootstrapping exercise may be of uncertain utility here, inasmuch
as Efron and Tibshirani (1993) point out that "parametric"
bootstrapping results depend on the assumption that the underlying
model is correct, and this may not be true here. One problem is
that the model may induce correlations, by virtue of the fact that
all but one of the observations appears both in the dependent
variable (Vt), and in the first independent variable (Vt-1).  



9.35

The same kind of problem exists in other analyses of the
data, but arises in a different way. Mech et al. (1987) used
linear regression to relate snow accumulation to moose abundance
on Isle Royale. Their results were critiqued by Messier (1991),
followed by a response by McRoberts et al. (1995). The data were
again studied by Post and Stenseth (1998). The difficulty is that
these analyses depend on the ratio of successive population sizes
(see, for example, eq.(1) and (2) of Post and Stenseth, 1998).
Using such a ratio can induce correlations, as was pointed out by
Watt (1964,1968) and further illustrated by Eberhardt (1970).
Consequently, analyses should somehow use only the current
observations as the dependent variable, and should not include the
population index as an independent variable in the regressions.
Further study is thus needed to determine just how to proceed.
Mech et al. (1987) show various correlations between reproductive
parameters and snow depth, so the question is not one of whether
winter conditions have an effect, but is rather one of the impact
on population trend.

9.11 Catch-effort methods

The catch-effort methods have been developed as a way to u s e
information gained in the course of exploiting a population. By far the m a i n
use has been in connection with commercial fisheries. The methods have h a d
very little use in appraising either sports fishing or hunting, a l t h o u g h
presumably suitable data has been increasingly available from surveys o f
hunting and fishing. Very much the same techniques are also e n c o u n t e r e d
under the title of "removal methods", mostly in situations where animals a r e
killed by traps, or removed from the study area for some reason.

Use of catch-effort methods in studies of exploited populations depends
on the prospect for obtaining large volumes of data in return for a re la t i ve l y
small investment of research or management funds. Complications a r e ,
however, introduced by the nature of commercial operations. Times and p laces
of sampling are largely not controlled by the investigators (which has led t o
increasing use of research vessels that can be operated in specified pa t t e rns ) .
The exploitation is usually continuous within the seasons set by regu la t ions ,
but the amount of effort may vary substantially in time, and may also b e
correlated with past success and local population densities. These and o t h e r
difficulties have led research workers to incorporate tagging programs w i t h
catch-effort studies. Such tagging programs are almost always of the " s ing le -
recovery" type inasmuch as there is no prospect of releasing tagged
individuals caught in large scale commercial operations.

In many fisheries situations, there may be more emphasis on es t ima t ing
rates of exploitation than on population size. For the most part, explo i ta t ion
rate is measured by estimating survival rates, and this almost always brings i n
the complications involved in separating fishing and non-fishing mor ta l i t y
ra tes .

A serious problem in using catch-effort methods is that t h e
"catchability" may change as exploitation continues. One obvious prospect i s
that the vulnerability of several age-classes to exploitation may differ. As t h e
more vulnerable age-groups are removed, catchability will appear to decrease.
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Normally such an effect can be studied by examining data pertaining t o
different age groups separately.

In sports hunting there may be two facets of changes in ca tchab i l i t y .
One is the higher vulnerability of younger animals, which leads to a n
apparent decrease in catchability as the season progresses. The other is t h a t
heavy hunting effort usually occurs early in the season. In some s i tuat ions
this may mean that hunters tend to interfere with each other and thus r e d u c e
the effective catchability early in the season. An additional factor may be t h a t
inexperienced hunters tend to give up after a few days; in combination t h e s e
two factors increase catchability as the season goes on. This plus decreases i n
vulnerability could make for marked changes in time. However, there are a lso
circumstances, such as deer-hunting in heavy cover, where the higher leve ls
of effort may actually be  more efficient in finding and harvesting t h e
available animals.

Apparent changes in catchability may also be due to o t h e r
circumstances. With relatively short seasons and high effort, sports h u n t i n g
studies may be conducted as though the population were "closed" to o t h e r
losses with the exception of "crippling" loss whereby animals are killed b u t
not recovered. For the most part, such losses tend to be proportional to t h e
recovered kill so that the recorded catch per unit of effort is less than actua l ,
and the population size is underestimated. In any case, the effects of c h a n g e s
in catchability and other uncertainties have largely limited application o f
catch-effort methods to commercial fisheries. The approach should, h o we v e r ,
be considered as a potential index method in other situations, so that the m a i n
features are discussed here.

9.12 Models for catch-effort data

The basic model for catch-effort studies is one developed by Leslie a n d
Davis (1939) for animal trapping studies and by DeLury (1947, 1951) f o r
fisheries work, and is thus sometimes called the Leslie-DeLury model. Work b y
Moran (1951), Zippin (1956), Ricker (1958), Chapman (1954), and Hayne (1949)
has led to their names also being attached to various versions of the equations.

The population is assumed to be closed to all losses other than the s o u r c e
under study, and to any form of recruitment. One simple and useful way o f
approaching the method is to visualize random sweeps of a net through a f ixed
unit of volume in some large region containing N animals. If the sweeps are o f
fixed size and are randomly executed, then the prospect that an ind iv idua l
animal is caught in one sweep can be regarded as a binomial-type s i tuat ion,
with the probability of capture (P) depending on the fraction of the tota l
volume swept by the net. It is assumed, of course, that the animals are u n a b l e
to escape the net and that the sweeps all constitute the same fraction of t h e
total volume. If the sweeps are randomly located, there is no need to assume
that the animals are distributed in any particular fashion -- the p robab i l i t y
that any given individual is caught does not depend on position of the others i f
the sweep is done "at random". Such an argument does, of course, have t o
encompass the very unlikely prospect that all of the animals present could b e
accomodated in one sweep.
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Assuming that the sweeping is done at random, we can determine t h e
probability that a given individual is caught on the it h trial very simply a s
P(1-P)i-1, that is, the animal escapes i-1 sweeps, each with probability (1 -P )
and is caught (with probability P) on the ith trial. Again this pertains only t o
the fate of a particular individual. If, however, it is postulated that the c h a n c e
that any one individual is caught does not depend on the fate of the o t h e r
individuals, then the expected value of the total catch, Ci, in the ith sweep c a n
be written as:
                                                          E(Ci) = NP(1-P)i-1                                            (9.20)

and the equation can be converted to a model relating number of captures i n
each sampling unit (sweep of the net) to the accumulated units, i.e.:
                                               log Ci = log(NP) + (i-1)log(1-P)                               (9.21)
and this equation can be fitted to data by ordinary regression methods. This i s
the form in which the equation has been used to describe "removal" trapping.

DeLury used a "catchability coefficient", k, rather than P, a n d
considered results in terms of the catch per unit of effort, rather than as c a t c h
per sweep of a single net, as above. This is a change necessitated by t h e
continuous nature of a commercial fishery, in which there may be a l a r g e
number of nets or other fishing "gear" in use simultaneously, and in w h i c h
the records may be in terms of summaries for fixed lengths of time. It is t h u s
necessary to assume that the various units of effort (which may be, f o r
example, several vessels fishing for a week) are independent (i.e., vessels do
not interfere with each other's success) and write the relationship as:
                                            Ct = kN(1-k)Et
where Et represents the cumulated units of effort up to the time w h e n
measurement of Ct began; that is, Et is made as nearly analogous to (i-1) i n
eq.(9.6) as possible. Also, when k is small and Et is large, the equation c a n
accurately be approximated by:
                                                                  Ct = kNe-kEt                                              (9.22)
and written in logarithmic form as:
                                                         log Ct = log(kN) - kEt                                       (9.23)
which can be fitted by simple linear regression of logarithms of catch p e r
unit of effort on cumulative effort. It should be noted that the same r e g r e s s i o n
fit can be used for eq.(9.21), with the main difference being in how o n e
interprets the regression slope. In the present equation, the slope estimates k ,
the catchability coefficient directly, while in eq.(9.21) it estimates log(1-P). Of
course, if P is small (as it will be when large populations are involved) t h e r e
may be no practical difference, since log(1-P) is susceptible to se r i es
expansion in which the main term is -P. Seber(1983:302-303) calls eq.(9.21)
Ricker's method, and eq.(9.23) DeLury's regression model.

A serious theoretical limitation on eq.(9.20) is that the successive Ci a r e
by no means independent, a fact emphasized by Moran(1951). If the capture o f
any individual animal is assumed to be independent of that of any o t h e r
individual, then a binomial model for the capture of X out of N individuals c a n
be used:

Pr[capturing X individuals in one trial]  =  (
N
x  ) Px (1 - P)N -x
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and the model can be extended to cover n trials in which each of Ci ind iv idua ls
are caught. Estimating equations were obtained by Moran(1951) and va r i ous
approximate solutions and methods for obtaining sample size and so on w e r e
obtained for these "removal" methods by Zippin (1956,1958).

Another way to approach the problem of non-independence o f
successive catches is to consider each such catch in terms of a "condi t ional "
model. If the probability of catching a given individual is regarded as k (as i n
DeLury's development) then on the it h trial the expected catch is that of t h e
binomial expectation:
                                                                          i-1
                                                    E(Ci) = k[N -  Σ  Cj]

                                                                          j=1
where the term in brackets represents the number of individuals surviving i n
the population up to the time of the ith sampli ng. DeLury generalized t h i s
model to represent an average catch per unit of effort, Ct and used Kt t o
represent cumulative removals up to the time period being considered so that:
                                                           Ct = kN - kKt                                                    (9.24)
This equation can also be fitted to data by simple linear regression methods. We
thus have two elementary models, eq.(9.20) and eq.(9.22), that can be applied t o
data from populations that are "open" only to the removal method being used
to estimate population size. Applications mostly have to be limited to r a t h e r
short time periods and conditions where some other form of loss quite s u r e l y
does not apply. In the great majority of cases, one has to assume losses f r o m
other causes, and often to account for various forms of recruitment to t h e
population under exploitation. These problems, plus uncertainty as to t h e
constancy of k, the "catchability coefficient", may require special aux i l i a r y
studies, often accomplished by tagging a number of individuals in t h e
population being studied. Those facing such problems should consult the book
by Ricker(1975) and the recent fisheries literature.

Example 9.8 Calculations for catch-effort models

 There are a number of ways to estimate variances and confidence
limits for the catch-effort models. These are summarized by  Seber
(1973,1982: Ch.7). Most current usage is based on regression
calculations, where the models are represented as:  
                            y = a + bx   
 where y is either catch per unit effort (eq.9.21) or log C(t) as
in eq.9.23, while x is cumulative kill or cumulative effort.  We
then recall that simple linear regression can be viewed as  a
straight line passing through the means of the observations:   

                                                             y -  y-  = b(x -  x-  )
o r ,

                                                    y = (y-  -  b x- ) + bx = a + bx
and that b is estimated by:

In both of the equations (9.21 and 9.23) k is estimated by b,
while a is either kN or loge(kN). Confidence limits for k  can be

b
y y x x

x x
i i

i

= − −
−

Σ
Σ

( )( )
( )2
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calculated directly, as in the usual linear regression
calculation for b. However, the regression intercept (a) estimates
the product kN, or its logarithm, so that an approximation is
required for a variance estimate of N, which is estimated from:

                                                           N̂  = 
a
b  = 

kN
k    

 or by solving for N in:

                                                        loge (kN) =  y-  - x-  
i.e.,

                                                     N̂  = 
exp(y-  -   b x- )

b  

(students should remember that b will be negative in the present
situation).

 Seber (1973,1982:Ch.7) gives an approximate variance estimate
for N appropriate for the logarithmic form (eq. 9.21) as:   

and for eq. 9.23 he gives:

 To use these equations in practice, we substitute the "variance

about regression" for s2. It will be recalled that this  is
estimated as the "mean square" of the deviations of the
observation  from the regression line, i.e.,   

The numerator can be rearranged by using a =  y-  - bx- , grouping
terms, and then writing out the squared terms:
 

    Σ [(yi -  y
-  ) + b(xi -  x

-  )]2 =  Σ(yi -  y
-  )2  -2bΣ(yi -  y

-  )(xi -  x-  ) + b2Σ(xi -  x
-  )]2

Substituting the estimated form of b reduces this to:

                                          Σ(yi -  y
-  )2 - b2 Σ ( x i -  x-  )]2

and the two "sums of squares" on the right can be calculated from,  for example,   

Variances of a and b are calculated as:
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 That for v(b) can be used directly to obtain approximate
confidence  limits on k, as:

                                         k -+   tn - 2 [ v (b ) ] 1 / 2

Example 9.9  Variable-effort models

 In the variable-effort models described above, the fishing
mortality rate, F, was assumed constant. When this is an
unrealistic assumption, an alternative is to consider mortality
due to  exploitation to be proportional to the effort, so that Fi

= kEi  where Ei is the effort in the ith time period and k is  a
constant "catchability coefficient" (as used in eq.9.23 and 9.24).   

 In generalizing the model, one may as well also permit time
intervals of varying length, so instead of a constant time
period, t, we now use intervals ti - ti-1, where i = 1,2,3,...,
and to denotes the beginning of exploitation. Thus where  eq.9.25
contains a term si-1 as the product of constant  survival rates
through the i-1 previous intervals, it now needs to be a product
like s1s2...si-1, which would then be replaced  by:

                                                   si = e-(kEi + X)(t i - ti-1) 

and the equivalent of eq. 9.27 becomes:

    kEi = [
kEiN

kE i +  X ] [exp(-S(Ej + X)(tj - tj -1)][1 -exp{(kEi+X)( t i-ti-1) } ]

This new equation is not so readily treated by regression methods.
One approach  is to consider the ratio Ci+1/Ci, which, after
taking logarithms (to base e) and rearranging gives a complicated
equation that can be replaced by an approximate solution by
dropping the second logarithmic  term and rearranging the result
so that a single linear regression  equation (y=a+bx) results
with:

                           y =  
1

t i - t i - 1   loge [
CiEi+1
Ci+1Ei

 ] , and a=X, b=k, and x=Ei

 Estimates of the slope (b) and intercept (a) provide approximate
values of  the unknown quantities X and k. An improved estimate is
then obtained by  substituting these trial values of X  and k in
the second logarithmic  term, and then using the entire right-hand
side of the equation as y  in a new regression calculation. The
resulting estimates of k and X  can be again substituted and the
regression calculated again to check  whether the estimates change
enough to justify another cycle.  Readers familiar with the series

expansion of e-x will note that  one might start with y values as:
 

                                         y =  
1

t i - t i - 1   loge [
C iE i + 1 [t i + 1 -t i]

C i + 1 E i[ t i + 1  - t i - 1 ]  ]

to give a somewhat improved first approximation.
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 A fault in the above procedure was noted by Chapman(1961), in
that the  successive y values will be correlated, again violating
the essential  assumptions for ordinary linear regression. To see
this, one can examine  the first 3 values of y:   

                                 y1 =  
1

t1 - t0    loge 
C1E2
C2E1

   

                                 y2 =  
1

t2 - t1    loge
C2E3
C3E2  

                                 y3 =  
1

t3 - t2    loge 
C3E4
C4E3

 

from which we see that successive terms contain common elements,
e.g., E2/C2 appears in y1 and again in y2 (inverted).  One way to
avoid this is to restrict the regression calculations  to every
other data point; one could thus do two separate regression
calculations and average the resulting estimates.   

 Evidently the above calculations will be somewhat involved and
tedious.  When effort varies markedly from period to period, an
approach like this  one seems to be the only realistic answer.
Readers should note that when  effort is constant from period to
period, the basis for this procedure  collapses. In fact, other
things being equal, the wider the range of  effort  encompassed by
the study, the more information one gets about  k and X.

Example 9.10  Catch-effort data  on an "open" population

 Some data on a population of tagged juvenile cottontail rabbits
may be used to study the effects of natural mortality (Eberhardt
et al.1963). The data apply to the 1955-56 hunting season, and
were selected from 7 years of similar data as giving the best fit
to a regression line. Hence the variance about regression (or
correlation)  should not be regarded as typical of such data. In
the first 3 weeks  of hunting, 32 tagged individuals were
harvested, but the effort  data are not usable, since this period
encompassed heavy hunting for  pheasants.   

 Weeks of      Tagged       Effort
 season          animals      in                   y              x
                      shot          gun-hours      log(C/E)        E(t)
                         Ci                Et

 4-6                  23           984                 9.151              0
7-9                   22           1167               2.936               .984
10-11               13           1042               2.524  2 .15
12-15                9            1059               2.140  9 .193

 A total of 230 tagged juvenile rabbits constitute the  pre-season
population. Regression calculations gave the line:   y = 9.196 -
.3213x  

One would thus estimate the initial population  size as:

                                                 
kN
k   = a/b = 9.196/.321 = 99
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If we add in the 32 rabbits killed in the first 3 weeks ("pheasant
season") this gives 131 rabbits as compared to the 230 tagged
before hunting began.

 Turning to eq. 9.28, we see that the intercept and slope now
represent  a more complicated expression:

                                                  a = log[
FN

F+X(1-exp[-(F+X)] ) ]

                                                  b = (F+X)t

From this we can estimate:

  
FN

F+X  = 88.92.

 Some other data yield an estimate of the instantaneous  rate of
natural mortality of 0.089 (calculated on a monthly basis).  Using
this rate and assuming the above periods to be uniformly  two
weeks long, and 4 weeks in a month, students should estimate  N.
To compare the outcome with the initial population (230), assume
4 weeks of natural mortality between tagging and the beginning  of
"pheasant season" (which was 3 weeks in length).   

9.13 Catch-effort models with non-harvest losses

Sources of mortality have commonly been divided into two categor ies ,
one due to exploitation and the other due to other causes, o p e r a t i n g
concurrently with the harvest, and usually described as "natural" mor ta l i ty .
When tagged individuals are included in the analysis it seems best to refer t o
rates due to exploitation and to "other" causes in order to be able to provide f o r
the additional mortality due to tagging, and the possible effects of loss of t ags
and non-reporting of tags.

The elementary model can be introduced by considering survival o v e r
some fixed period as a constant rate, s, and supposing that harvest takes a f ixed
fraction, f, of the population available during the interval. Letting the i ni t i a l
population size be N, we then have the first catch (C1) as:
                                                                 C1 = f(1-s)N
which can be interpreted as saying that, of the proportion dying in the per iod,
a fraction (f) are taken by the harvest method. The number surviving  up t o
the next period is just sN (since (1-s)N died in the first period), so that:
                                                                 C2 = f(1-s)sN

and, since s2N survive to the third period:
                                                                 C3 = f(1-s)s2N
and, in general:
                                                                 Ci = f(1-s)si-1N                                          (9.25)

The notion of "competing risks" (see Ricker 1975), or i ns tan taneous
rates, leads to defining:

s e F x t f
F

F X
= − + =

+
( ) ( . )      and                                      9 26
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where F denotes the rate of exploitation (F for fishing) and X the "other loss"
rate. When the other losses are assumed due only to natural mortality, t h e
symbol M is commonly used rather than X. Since the rates are " ins tan taneous"
and thus are independent of length of the time period, it is necessary to d e f i n e
an arbitrary interval length, t, and write equation (9.25) as:

                                                Ci = [
FN

F + X ] e-(F+X)t(i-1) [1 - e-(F+X)t]                 (9.27)

If t is now defined in terms of a "unit of effort" then equation (9.27) serves t o
replace eq.(9.22) in circumstances where the population is "open" to o t h e r
sources of loss. In effect, units of effort are regarded as operating sequen t ia l l y
on the population, so that we have the effect of i time intervals, each of l e n g t h
t during which the losses take place. In practice, many units of effort a r e
applied simultaneously to the population. The model may nonetheless b e
satisfactory, but the effect will be one of making estimates of F and X d i f f e r
from year to year or place to place, depending on how the effort is app l ied
(how it is distributed in time and space).

A number of schemes have been devised to estimate the parameters o f
eq.(9.26) from actual data. One of the simplest is to take logarithms ( u s i n g
natural logs) giving:

                                   log Ci = log[
FN
F+X   {1 - e-(F+X)t}] - (F+X)t(i-1)                     (9.28)

and letting y = log Ci, a = log[
FN
F+X {1 - e-(F+X)t}], b = (F+X)t, and

x = i - 1, which gives a simple linear regression model:
                                                          y = a + bx.
This can readily be fitted to data on catch per unit effort and time ( o r
cumulative effort). Since t is presumably known, the regression slope ( b )
gives an estimate of F+X. and interest then centers on estimating F, a n d
possibly N, from the regression intercept (a).

When a tagging or marking study is used, N is a known quantity and t h e
regression intercept can be written as:

                                     a = log F + log N + log[
1 - e-(F+X)t

F+X  ]                                 (9.29)

so that an estimate of log F can be obtained by subtracting log N and a n
estimate of the quantity in brackets calculated from the slope estimate (b) o f
(F+X) and t. An immediate problem with estimation from eq.(9.28) is that t h e
conditions of such a study do not conform very well to the assumpt ions
required by a simple linear regression estimate.

In many situations, it is unrealistic to regard F as being constant f r o m
time unit to time unit, because of substantial variations in the effort expended
in each time unit. Although grouping of units of effort has been used t o
produce new units of roughly equal size, such a practice is not v e r y
satisfactory if X, the "other loss" rate, is constant over time.

9.14  Sampling for indices
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The various uncertainties about interpretation of indices, comb ined
with conditions of their use, do not make it any less important to conform t o
good sampling practice in the use of indices. By and large, most index methods
are applied on rather large and heterogenous areas so there is generally a
prospect for considerable gains in efficiency (and the concomitant r educ t i on
of effort required) through the use of standard methods, like s t ra t i f i ca t ion.
Since indices are usually rather tightly tied to seasonal conditions, a s a m p l i n g
design needs to be arranged to permit study of seasonal effects, too.

Specific sampling methods need to be tailored to each index, and this i s
best done by writing a model of the kind already described but c o n t a i n i n g
parameters relevant to the  major factors that must be considered in t h e
particular instance at hand. Where possible, it seems desirable to arrange t h e
design in two or more stages. The first stage should be constructed in terms o f
those factors that are fairly well understood, so that the effects o f
uncertainties about a particular index are most likely to crop up in the second
(or lower) stage. In nearly all cases, one might expect to do a r e a s o n a b l y
efficient job of stratification by area and time, and to restrict the effect o f
other factors on an index to subsampling within the strata.

Stratification very likely will need to be more nearly of the k i n d
generally described as "analytical" in view of the hazards of getting a r e a
effects entangled with strata. That is, generally one would make an ind iv idua l
stratum out of as many contiguous units as possible, and try to avoid h a v i n g
scattered units belonging to the same stratum. However, if calibration i s
attempted, one cannot usually have more than a few strata, or costs of t h e
requisite independent density estimates become too high.

9.15 Transformations

Most of the few statistical analyses of index data done so far h a v e
employed transformations. The stated purpose of the transformation usually i s
to attempt to achieve normality. There are, however, other requirements f o r
the analysis of data of this kind. One arrangement is:

        (1) additivity
        (2) constancy of error variance
        (3) normality of distributions
        (4) independence of observations.

The usual goal in making a transformation is to carry out an analysis o f
variance. Thus one might have results of, say, roadside counts carried out o v e r
several years and in a number of different areas, and wish to know if t h e r e
are statistically significant differences in the underlying population leve ls
between areas and among years. Nearly all of the published analyses of i ndex
data have been so handled. An example of the analysis of variance on i ndex
data appears in Example 9.4.

Securing independence of observations is largely dependent on how t h e
observations are taken. Constancy of variance and normality of e r r o r
distributions are often taken as one feature, while additivity implies that t h e
underlying model is linear, that is, of the form:
                                                           xij  = Ai + Bj + eij                                             (9.30)
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so that an index value in year i and area j depends on an effect due to y e a r s
(A i ), one due to areas (Bj ) and a "random error component" (eij ) which shou ld
be normally distributed with E(eij ) = 0 for analysis of variance purposes. T h e
usual analysis of variance table gives components associated with the e l emen ts
of eq. (9.30) and uses the estimate of V(eij ) as a basis for tests of significance o f
the "contributions" of year and area terms to the total variability.

Most of the available analyses of ecological data seem to proceed a l o n g
the lines of seeking a transformation that tends to normalize the data, a n d
then assuming that eq.(9.30) is satisfied. This is a dangerous course, if t h e
investigator is really interested in sorting out the various effects i n f l u e n c i n g
his data. In that case, the essential need is to achieve linearity (additivity) i n
the model. From the form of equations (9.22), and (9.27) it is evident that a
logarithmic transformation will often be required. If the true relationship o f
index and density is as postulated in these equations, taking l oga r i t hms
effectively converts them to additive (linear) models like eq.(9.30). If t h e
results are to conform fully with the analysis of variance requirements, t h e n
one must also assume that an error component is multiplicative, i.e., for a
roadside count conducted in the same area for a number of years and areas o n e
would write the model as:
                                                            xij = Bj Dij eij
so that:
                                               log xij  = log Bj + log Dij  + log eij                              (9.31)
and investigate the prospect that there are area effects on the p ropor t i ona l i t y
coefficient (Bj ) as well as assessing population differences. If the e r r o r
component is assumed to be multiplicative, and it is further assumed t h a t
taking a logarithm converts it to a normal distribution, then those two
assumptions imply that the original distribution was lognormal in f o r m .
However, such assumptions may be somewhat fictitious as evidenced, f o r
example, by the previous remark that pellet-group data follow the n e g a t i v e
binomial distribution reasonably well. However, the difference b e t w e e n
negative binomial and lognormal distributions may not have much of a n
effect after log transformations.

Use of the analysis of variance technique on index data calls for r a t h e r
more detailed study than is possible here. The major point to be made is t h a t
blind use of a transformation seems extremely unwise. In most practical cases,
the experienced investigator really has little interest in some of the tests o f
significance. He will have long since concluded that there are real d i f f e rences
in population density between areas, and will largely be concerned with y e a r
to year changes on individual areas, and with studying the magnitude o f
differences between areas. He will also want to look for effects due to obse rve r ,
as might be identified in Example 9.3 in logarithmic form (where i pertains t o
observer and j to area):  
     
                            log Xij  = log Bi + 2 log rj  + log Dj + log eij

Analysis of some of the other equations might be considered in s im i l a r
terms, but, as already noted, the usual approach is through r e g r e s s i o n
methods. Regression equations were previously mentioned here as tools f o r
estimating some parameter (e.g., population size) in the model, but they c a n
also be studied in an analysis of variance format.
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One further aspect of transformations is that investigators tend to b e
somewhat uncomfortable about presenting results of an analysis in terms o f
the transformed variable. For the roadside count example, one may o r i g i n a l l y
have a variable expressed as so many animals seen per mile of driving (or p e r
hundred miles, hours of observation, etc.). The logarithmic t r a n s f o r m a t i o n
yields an "unnatural" kind of datum. The usual advice is to transform back t o
the original scale, neglecting the prospect that such a transformation w i l l
introduce a bias. Sometimes this may be the best procedure, particularly if t h e
results are to be used extensively for administrative guidance. However, i t
should be remembered that we are really considering the use of an index a n d
there should not be any special disadvantage to using an index in l oga r i t hm ic
units. In fact, the behavior of the index (additivity) may be much m o r e
suitable on the transformed scale. Consequently, It is often not desirable t o
transform back to the original scale. Staying in the transformed scale i s
particularly desirable if several indices are combined, as described in the n e x t
sect ion.

9.16  Combining indices

The problem of combining population indices has not been inves t iga ted
in any detail in ecological studies as yet. Related problems exist i n
econometrics, but the results obtained there have not been applied in eco logy
as yet. We will assume that several independent indices are available, and t h a t
the need is to combine them to construct a single, overall index. I n d e p e n d e n c e
here means derived from different and unrelated sources, and thus r e f e r s
largely to the sampling methods.

Part of the problem is that the individual indices will generally h a v e
different scales of measurement, in consequence of the kinds of i n f o r m a t i o n
on which they are based. One possible structure for an index value is:

                                                      X1i  =  β1Di + e1i                                                    (9.32)
where Di represents the true density and β1 represents a "scale factor" or a
"proportionality constant", while e1i represents a random error componen t .
We thus assume that a given index value is proportional to the true density, b u t
has associated with it a randomly selected fluctuation, due presumably to a
variety of influences on the observational process. The usual approach i n
problems of this type is to assume that E(eij ) = 0.

Equation 9.32 can be used to indicate what results when correlation o r
regression techniques are applied to indices. Supposing we have a second
index, with structure:
                                                        X2i =   Di + e2i
Then an indication of the behavior of the correlation and r e g r e s s i o n
coefficients, assuming large samples, can be given as follows:

                                                E(s
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                                                  E(sx1x2) = β1 β2  σ
2
D 

where  σ
2
D  refers to the true variation in population density over the set o f

areas being investigated. Then the sample correlation coefficient (r) i s
approx imate ly :
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so that r approaches unity only if   σ
2
e1  and  σ

2
e2   are nearly zero.

Consequently, a very high correlation between two indices might be taken t o
mean that both are nearly directly proportional to true density. However, t h i s
depends on the indices being obtained from independent sources (o the rw ise
the two indices may simply have highly correlated errors), and on t h e
correctness of equation 9.32.

The regression coefficient (b) is approximately:

                                                            b = 
sx1x2
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1 2

2
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2 2
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D

D e+ )

                                                     (9.34)

so that it is necessary for   σ
2
e2  = 0 before the regression coefficient w i l l

reflect the true ratio of the two coefficients. This is the situation where o n e
index is exactly proportional to true density, and one that is not likely to b e
encountered in practice. It is also the usual condition for regression ana lys i s
(i.e., that the independent variable be measured without error). If the ratio o f

σ
2
D  and  σ

2
e2   is somehow known, then the regression coefficient can b e

estimated without bias. In the usual circumstances, one does not know t h e
ratio, and the problem becomes difficult to handle.

In many cases, the investigator will have at least a rough idea of t h e
sampling effort that went into each index. Such information can serve as a
source of weights for combining indices -- usually just by converting t h e
"sample sizes" to proportions and multiplying the transformed index values b y
these weights. Before doing so, it is necessary to convert the indices to t h e
same scale. It also seems essential to have roughly the same spread of va lues
for each index. One simple way to achieve this result is to transform t h e
several indices to have about the same mean and variance. If the mean a n d
variance are selected as some convenient values, say Z and S2, then t h e
coefficients A and B for the transformation of the ith index:

                                                                Zi = BXi  + A

r
sx x

sx sx

= 1 2

1
2

1
2 1 2[ ] /                                      (9.33) 
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are obtained by noting that the variance of the transformed index should b e
equal to the original index adjusted by a constant:

                                                     
Σ(z - z

_
)2

( n - 1 )  =  S2  = 
B2Σ(x-x

_
)2

( n - 1 )   

so that:
                                                                    B = S/s,                                                     (9.35)

and since   Z = Bx-   + A  we have:

                                                               A = Z -(S/s)x-  .                                              (9.36)

A new set of coefficients (A,B) has to be calculated for each set of index data.
The transformed index values are then combined by weights obtained a s
suggested above:
                                                 Y = W1z1 + W2z2 +  ...  + Wnzn                               (9.37)
where there are n indices and the weights (Wi) sum to unity. A t r a n s f o r m e d
value will, of course, be obtained for each area and time period under study, so
that the y of eq.9.37 might be written as yij  to pertain to the it h area and jt h

time period. Then the index values would have to be written as xijk  (k for k t h

index), and so on.

All of the above pertains to a model (eq.9.32) which assumes that t h e
errors are additive. In Sec.9.12 it was pointed out that the l oga r i t hm ic
transformation implies that the model really is:

                                                                 Xi =  β Di ei
and the logarithmic transformation presumably makes it possible t o
investigate index behavior over a set of areas. Combining different i nd ices
will t hen partly be conditioned by the results of the statistical analysis o f
individual indices, and clearly can become quite complicated.

9.17  Converting indices

It has already been noted here that there are circumstances where a n
index value is not suitable for management purposes. This suggests a need f o r
ways to convert an index to an estimate of actual density -- or for "ca l ib ra t ion"
of an index. If a set of areas exists on which true population density can b e
estimated, then an apparent solution is just to compute the regression of t r u e
densities on index values. However, it seldom is possible to measure t r u e
density without error -- ordinarily some sampling process is involved. Th is
then puts us in exactly the same position as led to eq. 9.34, except that it m a y
now be assumed that   β1 = 1, so we have:

                                                                  b =
+

1
9 38

2

2

2
2

2β
σ

β σ
e

D

                           ( . )

and a knowledge of the ratio of the two variances is required to obtain a n
estimate of 1/ β2 for conversion or calibration purposes. Some elements o f
strategy for planning calibration work are evident from the a b o v e

relationship, though, i.e., keep  σ
2
e2   as small as possible and choose the set o f

population densities used to have as wide a range as possible. Very likely t h e s e
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may be conflicting aims, since the choice of low densities may tend to i n c r e a s e

σ
2
e2  .

When the regression relationship can be assumed to go through t h e
origin, and if the variance of y increases proportionately with increasing x,
then the ratio estimate (cf.Cochran 1977) is known to be optimum a n d
unbiased. Using the same model as above, we have:
                                                       E(Σyi)/E(Σxi) = 1/ β2
so this estimate is approximately unbiased. In most real-world situations, t h e s e
are the more likely assumptions than those of linear regression, so r a t i o
methods are to be preferred to regressions, here.

As mentioned before, there are reasons to doubt the accuracy of t h e
usual approximations to variance estimates (and hence confidence i n t e r v a l s )
arising from the presence of errors in the independent variable (X). V e r y
possibly there should be another component of variance in the equations. A
related issue has to do with the distinction between ratio estimators (total o f
the Xi assumed known) and double sampling (only a sample of the Xi assumed
known). With measurement errors in the Xi, one can have an observation o n
X i  on every study unit and still not "know" the total. That is, were a new s u r v e y
possible, it would not give the same total.

A somewhat pessimistic view of what is known about double s a m p l i n g
with errors in the independent variable can be tempered, however, b y
another look at eq.9.33. As remarked there, the sample correlation coe f f i c ien t
(r) approaches unity only if measurement errors in X and Y are nearly zero.
Hence observing sample correlations on the order of 0.9 or better with i ndex
data, gives one some considerable encouragement to think that t h e

measurement errors are small, at least in relation to σ
2
D  . Hence, there are some

grounds to suppose that the bias in eq.9.38 may not be unreasonably g r e a t ,
supposing β2 is not very small.

9.18 Comments on the use of index data

Although Fig. 9.1 suggests a variety of ways to approach the use o f
indices, a great deal of research may be required before really su i tab le
methodology is available for dealing with indices. Some of the problems m a y
be worth mention here. One very important issue is selecting a model for t h e
analysis. Using a simple multiplicative model has several advantages. One i s
the log-transformation which tends to "normalize" the data. The second is t h a t
it produces a linear relationship with time, if the population is changing at a
constant rate (e.g., growing exponentially). One very important question i s
whether prospective auxiliary variables do in fact have a multiplicative e f f ec t
on the index, so that the log transform yields a simple linear model. P e r h a p s
an even more important question is whether the actual population i s
changing at a constant rate.

At present, the main approach to dealing with a situation where a
number of variables may be involved seems to be to identify any variables t h a t
may possibly be relevant (and, of course, that can be measured!). Because t h e
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underlying relationship may not be linear, a squared term is somet imes
introduced in the set of variables to be studied. An effort is then made to f i n d
out which of the several variables considered may be worth keeping in a f i n a l
model. One might, for example, want to consider 5 candidate aux i l i a r y
variables. Including squared terms for each, then yields 10 variables. T h e
immediate problem is one of reducing the set to some smaller number o f
"significant" variables. One approach is to compute all possible r eg ress i ons
with each of the candidate variables left out in turn, and with that v a r i a b l e
included, and to use one or more criteria to see whether inclusion of a g i v e n
variable is worthwhile. Three such criteria are frequently considered, o n e
being the regression mean square, the second R2 [eq.(9.11)] and the third Cp
[eq.(9.17)}.

With as many as 10 variables, this approach gets out of hand, i n s a s m u c h
as there are 2r equations to study (210 = 1024). An alternative is to start with a n
equation containing all 10 variables and use a pre-determined procedure t o
work back through the list and to eliminate those variables that do not m e e t
certain criteria. A third procedure is stepwise regression, sarting with t h e
"best" variable (most highly correlated with the index) and work through t h e
set, adding a new variable if it meets a significance criterion, and s t opp ing
when there isn't a significant improvement.

Because a lot of computing is involved, these procedures g e n e r a l l y
depend on a computer program. Different results may be obtained f r o m
different procedures, and depending on the order in which variables a r e
introduced, and opinions on how to proceed may differ from reference t o
reference. One should always examine (plot) the residuals from regression t o
see whether they provide any hints as to possible improvements.

The Cp criterion seems to me unlikely to be very useful for i ndex
studies. As described by Draper and Smith (1998), it may be most useful i n
situations where there is some reason to believe that most of the va r i ab les
relevant to the process being studied are included in the set to be analyzed. Cp
may then serve in picking out sets that are somehow "adequate" to describe t h e
process. It is unlikely that one can hope to measure most of the variables t h a t
influence a population index.

The likely situation can be suggested for the bear data of Example 9.6.
Fig. 9.20 shows the data of Fig. 9.4 with the regression mean square of t h e
adjusted bear index [eq. (9.18)] added. The inclusion of auxiliary variables h a s
reduced the regression mean square to about 40% of that of the unad jus ted
index, and thus presumably yields a better index of population trend. However ,
there are a lot of smaller regression mean squares in the data set of Fig. 9.4,
presumably because these populations were more accurately enumera ted .
Using the delta method to aproximate the variability of the bear popu la t ion
(assuming survival rates and population sizes suggested by Eberhardt et a l .
(1994) and Eberhardt and Knight (1996) gives roughly the "true" va r i ab i l i t y
shown at the far right side of the figure. Clearly a good deal of the va r i ab i l i t y
in the index is unaccounted for. Sampling or measurement error i n
determining two of the auxiliary variables (frequency of sighting and s n o w
depths) may account for some of the difference, but certainly not all.
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Fig. 9.20. Data of Fig. 9.4 with adjusted bear index and estimates of actual populat ion
variability added.

One may thus be inclined to doubt the utility of Cp in ecological i ndex
studies. Because it utilizes RSSp, the regression sum of squares, it will l i ke l y
follow the trend indicated by the regression mean square. Also, RSSp for t h e
model with all significant parameters included is the same as RSS(full) of R2.
Hence, it may be best to use regression mean square and R2 as criteria f o r
studying potential indices by multiple regression. One can interpret t h e
resulting regression mean square by comparison to other values plotted in Fig.
9.4. It might also be noted that an earlier comment (Sec. 9.9) that "R2 c a n n o t
become unity" is strictly true, but the very low value of estimated popu la t ion
variability for bears (Fig. 9.20) suggests that R2 will become very close t o
unity when variability in regression mean squares is mainly f r o m
stochasticity. A number of such examples are present in the data used for Fig.
9.4, as shown in fig. 9.13.

9.19  Exercises.

9.19.1 Plot the data of Example 9.2 and suggest how one might go about trying
to determine whether the two estimates of b given in the example are
d i f f e ren t .

9.19.2 Plot the data on Gambel quail from Example 9.3 and the ratio and
regression lines. Which of the two lines appears to fit the data best? Why?

9.19.3 Conduct the analysis of variance described in Example 9.4

9.19.4 Data for counts of bison and for muxkox (Fig. 9.3) are given below. Using
natural logarithms of the data fit a straight line and the “quadratic” of eq.
(9.4) and use the F-test of eq. (9.6) to test for curvilinearity. Discuss the
difference in results between bison and muskox. Plot the residuals to see if
they help in explaining the difference.
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YEAR NO. OF MUSKOX YEAR NO. OF BISON
1950 6 1 1909 3 7
1951 7 6 1910 4 8
1952 7 7 1911 7 0
1953 9 0 1912 8 5
1954 100 1913 104
1955 116 1914 130
1956 126 1915 164
1957 143 1916 194
1958 181 1917 240
1959 206 1918 295
1960 256 1919 367
1961 293 1920 420
1962 353 1921 479
1963 406 1922 554
1964 467

9.19.5 Using the data on brown bears of Table 9.3 without year 6 (only one
point) conduct a one-way analysis of variance for differences among years
using untransformed data and then using a log-transform. Which seems to be
the best approach? Why?

9.19.6 Estimate lambda for the gray whale data of Table 9.4 using eqs. (9.7),
(9.8), and (9.9). Compare the resulting estimates with the rate obtained from
log-linear regression on the data.

9.19.7 Calculate the Durbin-Watson test  [eq.(9.13)] on the residuals from log-
linear regression from the gray whale data of Table 9.4. Report the value of d
and comment on its meaning. What is the mathematical relationship between
the slope and lambda for Table 9.7?

9.19.8 Repeat the calculations for Example 9.5 (sea otter census). Estimate the
ratios for each day from eqns. (9.7), (9.8), and (9.9) and compare with the ratio
estimates obtained by pooling the data from all 3 days. Do they suggest some
differences? How might you test for significant differences between days?

9.19.9 Data for the counts of Yellowstone grizzly family groups (Example 9.6)
appear below (note that the snowpack data have been “centered”—deviations
from the mean are shown).. (1) Compute R2 and s2 for loglinear regression on
the original counts. (2) Then compute R2 and s2 for the full data set, i.e., using
the two auxiliary variables along with year. (3) Extend the computations to
include t2 (year-squared) as an auxiliary variable. Discuss your results. What is
the effect of t2?

LNCOUNT YR FREQ SNOPAK
2.833 1 1.64 7.568
2.565 2 1.5 10.368
2.197 3 1.28 - 1 8 . 4 3 2
2.565 4 1.08 3.868
2.485 5 1.4 1 .568
2.639 6 1.58 - 4 . 4 3 2
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2.398 7 1.62 - 9 . 8 3 2
2.565 8 1.2 9 .568
2.833 9 2.29 2.868
2.197 1 0 2 - 4 . 3 3 2
3.219 1 1 3.12 - 0 . 6 3 2
2.565 1 2 1.64 3.568
2.944 1 3 2.12 - 1 5 . 7 3 2
2.773 1 4 1.86 - 3 . 1 3 2
3.219 1 5 1.95 8.968
3.178 1 6 2.65 - 4 . 7 3 2
3.135 1 7 1.65 0.468
2.996 1 8 1.67 - 6 . 3 3 2
2.996 1 9 1.47 3.268
2.833 2 0 1.47 - 5 . 3 3 2
3.497 2 1 1.96 12.668
3.434 2 2 2.95 8.168

9.19.10 Do part (2) of Exercise 9.19.9 but use the actual years (1967, 1968, 1969,…)
instead of 1,2.,3 and compare the results. Some references recommend
“centering” the data. That is, instead of using 1967, 1968, 1969,… find the mean
of this column and use the deviations from the mean as the x-variable. Try this
and compare your results.

9.19.11 Note that (Fig. 9.16) the observed count for 1985 differs considerably
from the predicted value.  Do you think that value should be dropped from the
index? Can you justify your answer statistically? How?

9.19.12 Compute Cp and AIC for the grizzly bear data using all of the auxiliary
variables in the table. To compute AIC you need to know that the log-likelihood
value for a linear model with normal errors is just the usual s2., but calculated
with n as divisor rather than n-p. That is, compute the sum-of-squares and
divide by n. The assumption of normal errors is not strictly defensible
statistically, but the log-transform seems to result in quite symmetrical
distributions from regression given reasonably large samples.

9.19.13 Lobster catch data

 DeLury (1947) gave the following catch data for lobsters:

 Date        C(t)            K(t)            E(t)                  

 May 23    82       0        0
        24     75       7        8
        25     94      13      16
        26     80      16      19
        27     83      22      27
        29     89      25      32
        30     70      32      40
        31     58      37      48
June 1       64      40      53
          2     55      45      61
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          5     52      50      69
          6     45      53      76
          7     45      54      77
          8     49      55      79
          9     45      57      85
        10     48      60      90
        12     43      62      96

 Using eq.9.23 he estimated k = .008348 and N = 112.34, using  simple l i n e a r
regression as outlined above. From eq.9.24,  he obtained k = .007984 and N =
116.33, also by linear  regression. Students should repeat the calculations, a n d
calculate  variances and confidence limits.  

9.19.14 Apply the expression for confidence limits given at the end of Example
9.5 to the 2 values of k obtaiend in the lobster catch data of Exercise 9.19.3.
Report your results.

 Exercise 9.19.15 Removal trapping

 Zippin (1956) illustrated removal methods by assuming catches of  165, 101,
and 54 animals were caught and removed in 3 nights of  trapping. Calculat ions
for eq. 9.21 are then based on the following  data:   

  i         C    i          y  i    = log  e         (C   i    )      x  i     = i-1           

 1       165     5.1060            0
 2       101     4.6151            1
 3        54      9.9890            2

 Regression calculations will t hen proceed just as in the  examples above, b u t
we now have b = log(1-p). When p is  small, we can represent log(1-p) by - p
and the calculations  are essentially those already described.  However, in t h i s
case, p is clearly not small, so that  eq. 9.21 is appropriate. Students shou ld
carry out the  regression calculations and compare the estimate of N  ob ta ined
by assuming b = p and b = log(1-p). Improved  methods of estimation a r e
available (Zippin 1958; Seber  1973,1982:Ch.7) but require an iteritive so lu t ion
or the  use of graphs (given in both references). Variance calculations  a r e
similarly complicated, and should be approached through  the r e f e r e n c e s
cited.   

 Attention to variability is important in designing a study based  on r e mo v a l
trapping, as a substantial fraction of the population  must be caught in o r d e r
to obtain a reasonably precise estimate.  If we let q = 1-p, then the fo l low ing
equation (Zippin 1956:171)  approximates the variance:   

                                    V[N] = 
N (1 -qn)qn

( 1  -  qn ) 2  qn - 1 

 Students should try this equation for a few values of p, n, and N.  Increasing n
(beyond 3) doesn't do much to reduce the variance, which  means that p has t o
be increased (by using more traps). This has a  considerable p rac t i ca l
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significance, in that it usually isn't  sensible to run a removal t r a p p i n g
program very long, since  immigrants will soon show up, violating t h e
assumption of a closed  population. Tagging some animals before the s tudy
starts is always a  wise precaution, if feasible.   

Exercise 9.19.16  Combining and comparing indices

 In section 9.16 it was suggested that several different indices  might b e
combined by: (1) transforming the individual indices  to a common scale, a n d
(2) weighting the transformed values by  some independent measure of t h e i r
variability. An example was  given by Eberhardt (1960), portions of which a r e
reproduced here  to exhibit calculations. Four individual indices were used:  ( 1 )
Accidental highway kills (recorded by Conservation Department staff.  ( 2 )
"Camp kill" (estimates of deer taken on a special "camp" license,  ob ta ined
through a mail survey of hunters).  (3) July deer counts (a roadside tally b y
Conservation Department personnel.   (4) Archery kill (deer taken on a spec ia l
"bow and arrow" hunting license,  estimated from an independent mail s u r v e y
of those hunters).   

 An arbitrary transformation to a variance of 9.0 and mean (Zi ) of 4.0  was used
as given by eqs.9.35 and 9.36. An example of the calculations  appears in t h e
second table below. Students should check their understanding of  t h e
equations by repeating the calculations. The transformed data were  t h e n
combined into a single index as in eq.4.15, by using a set of weights,  Wi  t h a t
summed to unity. One possible choice of weights was the sample  sizes for t h e
various indices:  

                                                              Average
                                                              number
 Index                 Units used                           per year                           Square root                     Weight                                  

 July count       Number of deer seen     5000                  70             .409
Archery kill    Number of hunters
                           in samples                       2000                  44.7           .258
Camp kill          Number of parties           200                  14.1           .081
                           in samples
Highway kill   Number of deer
                           tallied                              1900                  49.6           .252
                                                                                                             _______
                                                                                                             1.0000

Transformation of roadside deer counts to standardized  values

                                    Deer seen per 100 hours                                            

   District        1952    1953              1954              1955              1956              1957             1958                  
      1                18.4    16.4    29.5      19.3      20.7    17.6     17.1
      2                29.9    29.4    34.8       29.5    37.0     30.9     40.3
      3                30.9    35.1    37.1       35.2    39.9    32.8      35.5
      4                27.8    27.4    42.5       26.5    37.0    30.1      30.5
      5                49.6    32.8    28.1       30.4    29.8    32.9      35.0
      6                39.7    11.3    16.6         8.5    19.7    11.5      19.2
      7                71.4    78.6    77.8       58.2    38.1    49.2      59.7
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      8                20.6    19.1    14.2       14.0    18.9    16.9      24.8
      9                15.0    12.2    19.2        9.9     16.8    22.1      16.7

                                         Transformed values                                     

       1              7.93     7.54    4.09   8.10    8.38    7.77    7.68
       2             9.00     4.07   11.12   4.09   11.55   4.36   12.19
       3             4.36   11.18   11.57   11.20   4.95   4.73   11.26
       4             9.76     9.68   12.62   9.50    11.55   4.21   4.28
       5           12.83     4.73     9.82    4.26    4.15   4.75   11.16
       6           12.08      6.54    7.58    6.00    7.01    6.58    6.92
       7           18.25    19.65  19.49   15.68   11.76  12.76 15.97
       8             8.36       6.90    7.11    7.07    8.02    7.64    9.17
       9             7.27       6.72    6.92    6.27    7.62    8.65    7.60

               Data for transformation                            Check on transformation                                                                                          

s2 =237.315                      n=63                                           s2=8.9991
 s=15.405                           B=S/s=9.000/15.405=.1947               z=10.0002
x=29.041                          A=10-.1947(29.041)=4.3457

Several checks on behavior of these weights were used, including:  (1) e r r o r
mean square in an analysis of variance of the index (compared  as coef f i c ien ts
of variation),  (2) mean square deviation from regression (against pellet c o u n t
data),  and,  (3) correlations among the 4 indices.  Since none of these ana l yses
provided a measure that would be independent  of the index observations, t h e y
were only used to check on behavior of  the weights, i.e., to show that t h e
weights were roughly correct.   

 Execution of a transformation to the same scale and appropriate  w e ig h t i n g
does not provide much evidence about validity of the combined  index. In t h e
present example, there were two independent measures that  could be used f o r
this purpose. One was the pellet group counts (already  described here), a n d
the other a population estimate based on sex  composition, age structure, a n d
kill (harvest) data, labelled the  S-A-K method. Correlations between the 3
sources were:

               Combined index   S-A-K                                                
S-A-K                   .934              --
Pellet counts      .954             .951

There is thus independent evidence that the index did indeed  provide a good
measure of population levels.

 In a Wisconsin study, McCaffrey (1976) introduced another index,  a count o f
deer trails intersecting 0.4 km transects. Correlations were:  

 .                     Trail index       S-A-K                                      
  S-A-K                  .94                 --
Pellet counts       .89                .781

It thus seems that this index is also well-correlated with i n d e p e n d e n t
measures of deer population size.   
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 The question of how one uses a "good" index once it has be analyzed a n d
shown to be well-correlated with direct measures of abundance is one  n e e d i n g
further research. In broad outline, it has been suggested here  that, when t h e
direct estimate is available for only portions of the  study area, while the i ndex
is available for the entire area, then  one might use double sampling ( r a t i o
method) to use the index to  arrive at an estimate for the entire study a r e a .
Presumably predictions  of population levels might be made for sub -a reas
from the same  relationship. These will, however, be quite variable, and j us t
how  confidence limits on these predictions might be obtained seems to me  t o
be an unresolved question as yet. In areas where both index and  d i rec t
measure are available, it does not seem feasible to use the  index, unless it i s
converted to an estimate on the basis of prior  (not current) experience. T h e
current estimates should, however, be  used in checking to see that the index i s
still "in calibration".   


